Synlett 2005(2): 325-327  
DOI: 10.1055/s-2004-836066
LETTER
© Georg Thieme Verlag Stuttgart · New York

Radical Deoxygenation of 3-Azatricyclo[2.2.1.02,6]heptan-5-ols to 1,2-Dihydropyridines

David M. Hodgson*a, Matthew L. Jonesa, Christopher R. Maxwella, Osamu Ichiharab, Ian R. Matthewsc
a Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
Fax: +44(1865)275708; e-Mail: david.hodgson@chem.ox.ac.uk;
b Evotec OAI, 151 Milton Park, Abingdon, Oxfordshire OX14 4SD, UK
c Syngenta, Jealott’s Hill International Research Centre, Berkshire RG42 6EY, UK
Further Information

Publication History

Received 1 October 2004
Publication Date:
10 December 2004 (online)

Abstract

Radical deoxygenations of 7-alkyl-1-tosyl-3-azatricyclo[2.2.1.02,6]heptan-5-ols 9 (R = alkyl) give 7-alkyl-4-tosyl-2-aza­bicyclo[2.2.1]hept-5-enes 10, whereas 7-aryl-1-tosyl-3-azatricyclo[2.2.1.02,6]heptan-5-ols 9 (R = aryl) give 2-aryl-5-tosyl-1,2-dihydropyridines 12.

    References

  • 1a Beckwith ALJ. Ingold KU. In Rearrangements in Ground and Excited States   Vol. 1:  de Mayo P. Academic; New York: 1980.  p.161 
  • 1b Giese B. Kopping B. Göbel T. Dickhaut J. Thoma G. Kulicke KJ. Trach F. Org. React.  1996,  48:  301 
  • 1c Radicals in Organic Synthesis   Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001. 
  • 2a Warner CR. Strunk RJ. Kuivila HG. J. Org. Chem.  1966,  31:  3381 
  • 2b Halgren TA. Firkins JL. Fujimoto TA. Suzukawa HH. Roberts JD. Proc. Natl. Acad. Sci. U.S.A.  1971,  68:  3216 
  • 3 Hodgson DM. Maxwell CR. Wisedale R. Matthews IR. Carpenter KJ. Dickenson AH. Wonnacott SJ. J. Chem. Soc., Perkin Trans. 1  2001,  3150 
  • 4 Hodgson DM. Bebbington MWP. Willis P. Org. Biomol. Chem.  2003,  1:  3787 
  • 5 Jin Z. Fuchs PL. J. Am. Chem. Soc.  1995,  117:  3022 
  • 6 Afarinkia K. Mahmood F. Tetrahedron Lett.  2000,  41:  1287 
  • 8 Crich D. Quintero L. Chem. Rev.  1989,  89:  1413 
  • 10a Dieter RK. Sharma RR. J. Org. Chem.  1996,  61:  4180 
  • 10b McDonald FE. Chatterjee AK. Tetrahedron Lett.  1997,  38:  7687 
  • 12a

    Typical Procedure for the Preparation of a 1,2-Dihydropyridine:
    A solution of 7-azanortricyclanol 9 (R = 4-MeOC6H4) (350 mg, 0.74 mmol) in THF (4 mL) was added dropwise to a slurry of KH (30% dispersion in mineral oil; 148 mg, 1.11 mmol) in THF (4 mL) at 0 °C. After 20 min, CS2 (55 mL, 0.91 mmol) was added and the mixture stirred for a further 15 min before addition of MeI (55 mL, 0.88 mmol). The solution was then warmed to r.t. over 20 min, after which time H2O (20 mL) was added dropwise. The aqueous layer was extracted with Et2O (3 × 20 mL) and the combined organic layers were dried (MgSO4) and evaporated under reduced pressure. Purification of the residue by column chromatography (40% Et2O in petrol ether) gave a white solid foam, xanthate (350 mg, 84%); R f = 0.5 (50% Et2O in petrol ether). Selected diagnostic data: 1H NMR (400 MHz, CDCl3, rotamers observed): d = 5.51 (0.4 H, t, J = 1.3 Hz, CHO), 5.50 (0.6 H, t, J = 1.3 Hz, CHO), 2.53 (1.8 H, s, SMe) and 2.52 (1.2 H, s, SMe). A solution of Bu3SnH (211 mL, 0.78 mmol, 1.1 equiv) and AIBN (23 mg, 0.14 mmol, 0.2 equiv) in toluene (5 mL) was added via syringe pump over 2.25 h to a solution of the above xanthate (400 mg, 0.71 mmol) in toluene (25 mL) at reflux. The mixture was then stirred for an additional 45 min before being cooled and worked-up according to the method of Curran and Chang. [12b] Purification of the residue by column chromatography
    (30-50% Et2O in petrol ether) gave a colourless oil, 1,2-dihydropyridine 12 (R = 4-MeOC6H4) (202 mg, 62%); R f = 0.5 (60% Et2O in petrol ether). IR (film): 2979 (m), 2933 (m), 1723 (s), 1633 (m), 1596 (m), 1513 (s), 1393 (m), 1370 (m), 1288 (s), 1250 (s), 1176 (m), 1144 (s), 1088 (s), 814 (m), 732 (m), 715 (m), 662 (s), 579 (s) cm-1. 1H NMR (500 MHz, CDCl3): d = 8.01-7.75 (1 H, m, =CHN), 7.70 (2 H, d, J = 8.0 Hz, 2 × CH of Ts), 7.30 (2 H, d, J = 8.0 Hz, 2 × CH of Ts), 6.97 (2 H, d, J = 8.2 Hz, 2 × CH of MeOAr), 6.76 (2 H, d, J = 8.2 Hz, 2 × CH of MeOAr), 6.10-5.90 (1 H, m, CCH=), 5.41 (1 H, dd, J = 9.8, 5.5 Hz, CHCH=), 5.01-4.89 (1 H, m, CHN), 3.77 (3 H, s, OMe), 2.69 (1 H, dd, J = 13.1, 8.2 Hz, H of CH2), 2.59 (1 H, dd, J = 13.1, 5.2 Hz, H of CH2), 2.43 (3 H, s, Me of Ts), 1.48 (9 H, s, t-Bu). 13C NMR (100 MHz, DMSO, 373K): d = 159.3 (Cquat of MeOAr), 152.0 (C=O), 144.5 (Cquat of Ts), 139.4 (Cquat of Ts), 134.1 (=CHN), 131.3 (2 × CH of Ts), 130.7 (2 × CH of MeOAr), 128.7 (Cquat of MeOAr), 127.6 (2 × CH of Ts), 124.3 (CHCH=), 119.9 (TsCquat), 118.0 (CCH=, br), 114.9 (2 × CH of MeOAr), 84.3 (CMe3), 56.1 (OMe), 54.9 (CHN, br), 40.2 (ArCH2), 28.4 (3 × Me of Boc) and 21.7 (Me of Ts). MS (CI, NH3): m/z (%) = 473 (100) [M + NH4 +] and 354 (30). C25H33O5N2S requires [M]: 473.2110; found [M + NH4]: 473.2098.

  • 12b Curran DP. Chang C.-T. J. Org. Chem.  1989,  54:  3140 
  • 14 Zhang C. Izenwasser S. Katz JL. Terry PD. Trudell ML. J. Med. Chem.  1998,  41:  2430 
  • 15 Zhang C. Trudell ML. J. Org. Chem.  1996,  61:  7189 
  • 16 For a recent review on dihydropyridines, see: Lavilla R. J. Chem. Soc., Perkin Trans. 1  2002,  1141 
  • 17 Buolamwini JK. Knaus EE. Eur. J. Med. Chem.  1993,  447 
  • 18 Leung-Toung R. Liu Y. Muchowski JM. Wu Y.-L. J. Org. Chem.  1998,  63:  3235 
7

CCDC 237474 available at http://www.ccdc.cam.ac.uk.

9

No 1,2-dihydropyridines 12 were observed as by-products from these reactions.

11

Variation of the thiocarbonyl moiety (thiocarbonyl-imidazole, or CSOPh) gave 1,2-dihydropyridine 12 (R =
4-MeOC6H4) in 43% and 59% yields, respectively.

13

Prepared in low yield (11%) by desulfonylation [6% Na-Hg, B(OH)3, MeOH] of 7-azanortricyclanol 9 (R = 4-MeOC6H4).