J Reconstr Microsurg 2004; 20(7): 555-564
DOI: 10.1055/s-2004-836127
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Flap Prefabrication and Prelamination with Tissue-Engineered Cartilage

Rainer Staudenmaier1 , T. Nguyen Hoang1 , Norbert Kleinsasser1 , Christian Schurr1 , Kathrin Frölich1 , Magdalene M. Wenzel1 , Joachim Aigner1
  • 1ENT Department, University of Regensburg Hospital, Regensburg, Germany
Further Information

Publication History

Accepted: May 17, 2004

Publication Date:
09 November 2004 (online)

In reconstructive surgery, the integration of tissue-engineered cartilage in a prefabricated free flap may make it possible to generate flaps combining a variety of tissue components, to meet the special requirements of particular defects. One aim of the present study was to investigate prefabrication of a microvascular free flap by implanting a vessel loop under a skin flap in a rabbit model. A second aim was to report on the authors’ preliminary experiences in prelaminating prefabricated flaps with autologous tissue-engineered cartilage, in terms of matrix development, inflammatory reaction, and host-tissue interaction.

The flap was prefabricated by implanting a vessel loop under a random-pattern abdominal skin flap. The tissue-engineered cartilage constructs were made by isolating chondrocytes from auricular biopsies. Following a period of amplification, the cells were seeded onto a non-woven scaffold made of a hyaluronic-acid derivative and cultivated for 2 weeks. One cell-biomaterial construct was placed beneath the prefabicated flap, and two additional constructs were placed subcutaneously and intramuscularly. In addition, a biomaterial sample without cells was placed subcutaneously to provide a control. All implanted specimens were left in position for 6 or 12 weeks. Neovascularization in the prefabricated flap and biomaterial construct was analyzed by angiography. After explantation, the specimens were examined by histologic and immunohistochemical methods.

The prefabricated flaps showed a well-developed network of blood vessels between the implanted vessel loop and the original random-pattern blood supply. The tissue-engineered constructs remained stable in size and showed signs of tissue similar to hyaline cartilage, as evidenced by the expression of cartilage-specific collagen type II and proteoglycans. No inflammatory reactions were observed. The physiologic environment of the autologous rabbit model provided favorable conditions for matrix deposition and maturation of the cell-biomaterial constructs.

These initial results demonstrated the potential of prefabricating an axial perfused flap, combined with tissue-engineered cartilage, thus creating functionally competent tissue components for reconstructive surgery with minimal donor-site morbidity.

REFERENCES

  • 1 Seikaly H, Rieger J, Wolfaardt J, Moysa G, Harris J, Jha N. Functional outcomes after primary oropharyngeal cancer resection and reconstruction with the radial forearm free flap.  Laryngoscope. 2003;  113 897-904
  • 2 Pribaz J J, Fine N, Orgill D P. Flap prefabrication in the head and neck: a 10-year experience.  Plast Reconstr Surg. 1999;  103 808-820
  • 3 Shen T Y. Microvascular transplantation of prefabricated free thigh flap (letter).  Plast Reconstr Surg. 1982;  69 568
  • 4 Pribaz J J, Fine N A. Prelamination: defining the prefabricated flap.  Microsurgery. 1994;  15 618-623
  • 5 Geishauser M, Staudenmaier R, Biemer E. Donor-site morbidity of the segmental rectus abdominis muscle flap.  Br J Plast Surg. 1998;  51 603-607
  • 6 Rasp G, Staudenmaier R, Ledderose H, Kastenbauer E. Autologous rib cartilage harvesting: operative procedure and postoperative pain reduction.  Laryngorhinotologie. 2000;  79 155-159
  • 7 Solchaga L A, Dennis J E, Goldberg V M, Caplan A I. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.  J Orthop Res. 1999;  17 205-213
  • 8 Pittenger M F, Mackay A M, Beck S C et al.. Multilineange potential of adult human mesenchymal stem cells.  Science. 1999;  284 143-147
  • 9 Pirsig W, Bean J K, Lenders H et al.. Cartilage transformation in a composite graft of demineralized bovine bone matrix and ear perichondrium used in a child for the reconstruction of the nasal septum.  Int J Pediatr Otorhinolaryngol. 1995;  32 171-181
  • 10 ten Koppel P G, van Osch G J, Verwoerd C D, Verwoerd-Verhoef H L. Efficacy of perichondrium and a trabecular demineralized bone matrix for generating cartilage.  Plast Reconstr Surg. 1998;  102 2012-2020
  • 11 van Osch G J, van der Veen S W, Burger E H, Verwoerd-Verhoef H L. Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium.  Tissue Eng. 2000;  6 321-330
  • 12 Aigner J, Tegeler J, Hutzler P et al.. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester.  J Biomed Mater Res. 1998;  42 172-181
  • 13 Rotter N, Aigner J, Naumann A et al.. Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage.  J Biomed Mater Res. 1998;  42 347-356
  • 14 Riesle J, Hollander A P, Langer R, Freed L E, Vunjak-Novakovic G. Collagen in tissue-engineered cartilage: types, structure, and crosslinks.  J Cell Biochem. 1998;  71 313-327
  • 15 Saadeh P B, Brent B, Mehara B J et al.. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development.  Ann Plast Surg. 1999;  42 509-513
  • 16 von der Gaus M V, von der Mark H, Muller P. Relationship between shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture.  Nature. 1977;  267 531-532
  • 17 Benya P D, Padilla S R, Nimni M E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture.  Cell. 1978;  15 1313-1321
  • 18 Benya P D, Schaffer J D. Dedifferentiated chondrocytes re-express the differentiated collagen phenotype when cultured in agarose gels.  Cell. 1982;  30 215-224
  • 19 Kamil S H, Koijma K, Vacanti M P, Bonassar L J, Vacanti C A, Eavey R D. In vitro tissue engineering to generate a human-sized auricle and nasal tip.  Laryngoscope. 2003;  113 90-94
  • 20 Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C A, Vacanti C A. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage.  J Biomater Sci Polym Ed. 1998;  9 475-487
  • 21 Britt J C, Park S S. Autogenous tissue-engineered cartilage: evaluation as an implant.  Arch Otolaryngol Head Neck Surg. 1998;  124 671-677
  • 22 Vogelin M D, Jones N F, Liebermann J R et al.. Prefabrication of bone by use of vascularized periosteal flap and bone morphogenetic protein.  Plast Reconstr Surg. 2002;  109 190-198
  • 23 Saray A, Teoman T A, Altinol G. Prefabrication of a free peripheral nerve graft following implantation on an arteriovenous pedicle.  J Reconstr Microsurg. 2002;  18 281-288
  • 24 Pribaz J J, Fine N A. Prefabricated and prelaminated flaps for head and neck reconstruction.  Clin Plast Surg. 2001;  28 261-272
  • 25 Casabona F, Martin I, Muraglia A et al.. Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery.  Plast Reconstr Surg. 1998;  1001 577-581
  • 26 Cavadas P C, Bonanad E, Baena-Montilla P, Vera-Sempere F J. Prefabrication of a free flap for tracheal reconstruction: an experimental study. Preliminary report.  Plast Reconstr Surg. 1996;  98 1052-1062
  • 27 Tark K C, Tucher R E, Shaw W W. Flap prefabrication: effectivness of different vascular carriers.  Ann Plast Surg. 1996;  37 298-304
  • 28 Schechter G L, Biller H F, Ogura J H. Revascularized skin flaps: a new concept in transfer of skin flaps.  Laryngoscope. 1969;  79 1647-1665
  • 29 Erol O, Spira M. Omentum island skin graft flap.  Surgery. 1978;  29 594-96
  • 30 Hirase Y, Valauri F A, Buncke H J et al.. Customized prefabricated neovascularized free flaps.  Microsurgery. 1987;  8 218-224
  • 31 Karatas Ö, Atabey A, Demirdöver C et al.. Delayed prefabricated arterial composite venous flaps: an experimental study in rabbits.  Ann Plast Surg. 2000;  44 44-52
  • 32 Tanaka Y, Sung K C, Tsutsumi A et al.. Tissue engineering skin flaps: which vascular carrier arteriovenous shunt loop or arteriovenous bundle has more potential for angiogenesis and tissue generation?.  Plast Reconstr Surg. 2003;  112 1626-1644
  • 33 Nguyen Hoang T. Die Neovaskularisation im praeformierten Gewebelappen in Abhaengigkeit von arteriovenoesen Blutfluss des implantierten Gefaesstieles.  Dissertation TU Munich. 1997;  1-127
  • 34 Hickey M J, Wilson J, Hurley J V, Morrison W A. Mode of vascularization of control and basic fibroblast growth factor-stimulated prefabricated skin flaps.  Plast Reconstr Surg. 1998;  101 1296-1304
  • 35 Morrison W A, Dvir E, Doi K et al.. Prefabrication of thin transferable axial-pattern skin flaps: an experimental study in rabbits.  Br J Plast Surg. 1990;  43 645-654
  • 36 Takato T, Komuro Y, Yonehara H et al.. Prefabricated venous flap: an experimental study in rabbits.  Br J Plast Surg. 1993;  46 122-126
  • 37 Itoh Y. An experimental study of prefabricated flaps using silicone sheets with reference to the vascular patternization process.  Ann Plast Surg. 1992;  28 140-146
  • 38 Morrison W A, Penington A J, Kumta S K. Clinical applications and technical limitations of prefabricated flaps.  Plast Reconstr Surg. 1997;  99 378-385
  • 39 Safak T, Akyurek M, Ozcan G et al.. Osteocutaneous flap prefabriction based on the principle of vascular introduction: an experimental and clinical study.  Plast Reconstr Surg. 2000;  105 1304-1313
  • 40 Kimura N, Hasumi T, Satoh K. Prefabricated thin flap using the transversalis fascia as a carrier.  Plast Reconstr Surg. 2001;  108 1972-1980
  • 41 Ozerdem O R, Anlatici R, Sen O, Yildirim T, Bircan S, Aydin M. Prefabricated galeal flap based on superficial temporal and posterior auricular vessels.  Plast Reconstr Surg. 2003;  111 2166-2175
  • 42 Rohner D, Jaquiery C, Kunz C et al.. Maxillofacial reconstruction with prefabricated osseous free flaps: a 3-year experience with 24 patients.  Plast Reconstr Surg. 2003;  112 748-757
  • 43 Hong J P, Lee H B, Chung Y K et al.. Coverage of difficult wounds around the knee joint with prefabricated distally based sartorius muscle flaps.  Ann Plast Surg. 2003;  50 484-490
  • 44 Alam M I, Asahina I, Seto I et al.. Prefabricated vascularized bone flap: a tissue transformation technique for bone reconstruction.  Plast Reconstr Surg. 2001;  108 952-958
  • 45 Macleod T M, Williams G, Sanders R et al.. Prefabricated skin flaps in a rat model based on dermal replacement matrix Permacol™.  Br J Plast Surg. 2003;  56 775-783
  • 46 Cronin K J, Messina A, Knight K R et al.. New murine model of spontaneous tissue engineering, combining an arteriovenous pedicle with matrix materials.  Plast Reconstr Surg. 2004;  113 260-269
  • 47 Ahn K M, Kim M J, Lee J H. Prelaminated fasciomucosal flap using tongue mucosa in a rat model.  J Reconstr Microsurg. 2003;  19 195-202
  • 48 Chiarini L, De Santis G, Bedogni A, Nocini P F. Lining the mouth floor with prelaminated fascio-mucosal free flaps: clinical experience.  Microsurgery. 2002;  22 177-186
  • 49 Delaere P R, Hardillo J, Hermans R, van den Hof B. Prefabrication of composite tissue for improved tracheal reconstruction.  Ann Otol Rhinol Laryngol. 2001;  110 849-860
  • 50 Kandel R, Hurtig M, Grynpas M. Characterization of the mineral in calcified articular cartilagenous tissue formed in vitro.  Tissue Eng. 1999;  5 25-34
  • 51 Hutmacher D W. Scaffolds in tissue engineering bone and cartilage.  Biomaterials. 2000;  21 2529-2543
  • 52 Meinhart J, Fussenegger M, Hobling W. Stabilization of fibrin-chondrocyte constructs for cartilage reconstruction.  Ann Plast Surg. 1999;  42 673-678
  • 53 Shea L D, Wang D, Franceschi R T, Mooney D J. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffold.  Tissue Eng. 2000;  6 605-617
  • 54 Isogai N, Landis W, Kim T H, Gerstenfeld L C, Upton J, Vacanti J P. Formation of phalanges and small joints by tissue-engineering.  J Bone Joint Surg (Am). 1999;  81 306-316
  • 55 Arevalo-Silva C A, Cao Y, Vacanti M, Weng Y, Vacanti C A, Eavey R D. Influence of growth factors on tissue-engineered pediatric elastic cartilage.  Arch Otolaryngol Head Neck Surg. 2000;  126 1234-1238

Rainer StaudenmaierM.D. 

ENT Department, University of Regensburg Hospital

Franz-Josef-Strauss-Allee 11

D-93053 Regensburg, Germany