Abstract
Background: Passive immunization with palivizumab is expensive and requires considerable logistic
effort. So far 5 monthly injections from November to March are recommended. The RSV
season onset and its duration, however, shows considerable variation. In many countries
on the northern hemisphere a dual rhythm is described. Method: A web-based early warning system within the research network PID-ARI.net is in place
since 2002. The surveillance data are published online weekly via www.pid-ari.net.
This enables physicians to carry out interventions, like passive immunization for
RSV, synchronously with the epidemiology of a given pathogen instead of a rigid schedule.
The surveillance of PID-ARI.net is based on a 19 valent multiplex RT-PCR on naso-pharyngeal
aspirates. The samples are provided by hospitals and offices in Freiburg, Mainz and
Schleswig-Holstein (north, middle, south of Germany). Children with lower airway infections
are prospectively enrolled. Results: In the time period from July 1999 to June 2003 with 20 months of recommended palivizumab
application, 5 months (25 %) would have been not on target. In two seasons the start
of the vaccine campaign would have been too early (waste of two months). In one season
the application would have started one month too late and in two seasons the vaccine
campaign would have been stopped two months too early leaving the vaccinees on risk
for acquiring RSV. Conclusions: The web-based early warning system of PID-ARI.net is the first, pathogen-specific,
comprehensive and fast surveillance-system for airway pathogens in Europe. It facilitates
the epidemic-synchronous use of the passive immunization with palivizumab and by this
increases its efficiency and should safe costs.
Zusammenfassung
Hintergrund: Die passive Immunisierung mit Palivizumab (Synagis®, Abbott) ist teuer und erfordert
einen erheblichen logistischen Aufwand. Bis jetzt werden 5 Injektionen zwischen November
und März empfohlen. Der Beginn der RSV-Saison und ihre Dauer zeigt jedoch eine erhebliche
Variabilität. In vielen Ländern der nördlichen Hemisphäre wurde ein dualer Rhythmus
beschrieben. Methode: Das Frühwarnsystem des Forschungsnetzwerkes PID-ARI.net ist seit 2002 aktiv. Die
Surveillance-Daten werden wöchentlich online via www.pid-ari.net publiziert. Dies
erlaubt der Ärzteschaft Interventionen wie zum Beispiel die passive Immunisierung
gegen RSV epidemiesynchron durchzuführen anstatt dem rigiden Zeitfenster zwischen
November und März. Die Surveillance von PID-ARI.net basiert auf der Diagnostik aus
dem Nasopharyngealsekret mittels einer 19-valenten multiplex-RT-PCR. Die Proben werden
in Krankenhäusern und Praxen im Raum Freiburg, Mainz und Schleswig-Holstein (Süd,
Mitte, Nord) gewonnen. Kinder mit einer tiefen Atemwegsinfektion werden prospektiv
erfasst. Ergebnisse: Im Zeitraum von Juli 1999 bis Juni 2003 waren nach der bisherigen Empfehlung 20 Anwendungsmonate
vorgesehen. Über 5 Monate (25 %) lag die Applikation außerhalb der hauptsächlichen
Virusaktivität. In 2 Saisons lag der Beginn der Immunisierungskampagne zu früh (Verschwendung
von 2 Monaten). In einer Saison war der Beginn 1 Monat zu spät und in 2 Saisons wurde
die Kampagne zu früh gestoppt und damit die Impflinge dem Risiko einer RSV-Infektion
ausgesetzt. Schlussfolgerungen: Das Frühwarnsystem von PID-ARI.net ist das erste, pathogenspezifische, umfassende
und schnelle Surveillancesystem für Atemwegsinfektionserreger in Europa. Es erlaubt
die epidemiesynchrone Applikation mit Palivizumab und steigert damit dessen Effizienz
und erlaubt gegebenfalls Kosten zu sparen.
Key words
Airway infections - early warning - multiplex-RT-PCR - research network - respiratory
syncytial virus (RSV) - webpage
Schlüsselwörter
Atemwegsinfektionen - Forschungsnetzwerk - Frühwarnsystem - Internet - multiplex RT-PCR
- Respiratory Syncytial Virus
References
1 Buehler J. Surveillance. In: Rothman KJ, Greenland S (eds). Modern epidemiology.
Lippincott, Philadelphia 1998; 435-457
2
Byrt T.
How good is that agreement? (Letter to the editor).
Epidemiology.
1996;
7
561
3
Centers for Disease Control .
Guidelines for evaluating surveillance systems.
MMWR.
1998;
37 (Suppl 5)
1-18
4
Florman A L, McLean L C.
The effect of altitude and weather on the occurrence of outbreaks of respiratory syncytial
virus infections.
J Infect Dis.
1988;
158
1401-1402
5
Gilchrist S, Török T J, Gary H E, Alexander J P, Anderson L J.
National surveillance for respirators syncytial virus, United States, 1985-1990.
J Infect Dis.
1994;
170
986-990
6
Glezen W P, Denny F W.
Epidemiology of acute lower respiratory disease in children.
N Engl J Med.
1973;
288
498-505
7
Gröndahl B, Puppe W, Hoppe A, Kühne I, Weigl J AI, Schmitt H-J.
Rapid identification of nine microorganisms causing acute respiratory tract infections
by single-tube multiplex reverse transcription-PCR: Feasibility study.
J Clin Microbiol.
1999;
37
1-7
8 Gwaltney J M. Rhinoviruses. In: Evans AS, Kaslow RA (eds). Viral Infections in Humans.
Epidemiology and Control. Plenum Medical Book Company, New York, London 1997; 815-838
9
Mullins J A, Lamonte A C, Bresee J S, Anderson L J.
Substantial variability in community respiratory syncytial virus season timing.
Pediatr Infect Dis J.
2003;
22
857-863
10
Paton A W, Paton J C, Lawrence A J, Goldwater P N, Harris R J.
Rapid detection of respiratory syncytial virus in nasopharyngeal aspirates by reverse
transcription and polymerase chain reaction amplification.
J Clin Microbiol.
1992;
30
901-904
11
Puppe W, Weigl J AI, Aron G, Gröndahl B, Schmitt H J, Niesters H GM, Groen J.
Evaluation of a multiplex reverse transciptase PCR ELISA for the detection of nine
respiratory tract pathogens.
J Clin Virology.
2004;
30
165-174
12
Van den Hoogen B G, de Jong J C, Groen J, Kuiken T, de Groot R, Fouchier R AM, Osterhaus A DME.
A newly discovered human pneumovirus isolated from young children with respiratory
tract disease.
Nat Med.
2001;
7
719-724
13
Waris M.
Pattern of respiratory syncytial virus epidemics in Finland: two-year cycles with
alternating prevalence of groups A and B.
J Infect Dis.
1991;
163
464-469
14
Weber A, Weber M, Milligan P.
Modeling epidemics caused by respiratory syncytial virus (RSV).
Mathematical Biosciences.
2001;
172
95-113
15
Weigl J AI, Puppe W, Schmitt H J.
Seasonality of respiratory syncytial virus-positive hospitalizations in children in
Kiel, Germany, over a 7-year-period.
Infection.
2002;
30
186-192
16
Weigl J AI, Puppe W, Rockahr S, Schmitt H J.
Burden of disease in hospitalized RSV-positive children in Germany.
Klin Pädiatr.
2002;
214
334-342
17
Weigl J AI, Puppe W, Schmitt H J.
Can respiratory syncytial virus etiology be diagnosed clinically? A hospital-based
case-control study in children under two years of age.
Eur J Epidemiol.
2003;
18
431-439
18
Weigl J AI, Puppe W, Belke O, Neusüß J, Bagci F, Schmitt H J.
The descriptive epidemiology of severe lower respiratory tract infections in children
in Kiel, Germany.
Klin Pädiatr.
2005;
(in print)
19 Zambon M. The use of molecular methods for diagnosis and surveillance of respiratory
viruses. Abstract S308. Program 12th European Congress of Clinical Microbiology and
Infectious Diseases, Milano 24-27 April 2002; 49
PD Dr. Josef Weigl
Paediatric Infectious Diseases · Children's Hospital Kiel
Schwanenweg 20
24105 Kiel
Germany
Fax: +49/4 31/5 97/16 80
eMail: weigl@pediatrics.uni-kiel.de