Abstract
α-d -Galacto-2-deoxy-oct-3-ulopyranosonic acids, α-d -gluco-2-deoxy-oct-3-ulopyranosonic acids and α-l -galacto-2,8-dideoxy-oct-3-ulopyranosonic acids can be converted into unnatural glycosyl amino acids via a one-pot intramolecular Ritter reaction. Initially, a ketopyranoside-based acid condenses under Lewis acid-promoted conditions with a nitrile (benzonitrile or acetonitrile) and a partially protected diamino ester (Boc-DAB-Ot -Bu, Boc-Orn-Ot -Bu) to form unnatural glycosyl amino esters. The resulting glycosyl amino esters are useful building blocks for solid-phase glycopeptide synthesis. For example, the glycosyl amino acid derived by condensation of α-d -galacto-2-deoxy-oct-3-ulopyranosonic acid with benzonitrile and DAB was used to replace serine in the potent opioid peptide sequence H2 N-Tyr-d -Thr-Gly-Phe-Leu-Ser-CONH2 .
Key words
carbohydrates - glycopeptides - combinatorial chemistry - glycosyl amino acids - peptides
References
1
Dwek RA.
Chem. Rev.
1996,
96:
683
2
Varki A.
Glycobiology
1993,
3:
97
3
Grochee FC.
Gramer MJ.
Andersen DC.
Bahr JB.
Rasmusen JR. In Frontier in Bioprocessing II
Todd CP.
Sikdar SK.
Bier M.
American Chemical Society;
Washington:
1992.
p.199
4
Fisher JF.
Harrison AW.
Bundy GL.
Wilkinson KF.
Rush BD.
Ruwart MJ.
J. Med. Chem.
1991,
34:
3140
5
Mehta S.
Meldal M.
Duus JO.
Bock K.
J. Chem. Soc., Perkin Trans. 1
1999,
1445 ; and references cited therein
6
Lohof E.
Planker E.
Mang C.
Burkhart F.
Dechantsreiter MA.
Haubner R.
Wester H.-J.
Schwaiger M.
Hölzemann G.
Goodman SL.
Kessler H.
Angew. Chem. Int. Ed.
2000,
39:
2761
7
Weiss JB.
Lote CJ.
Bobinski H.
Nature (London) New Biol.
1971,
234:
25
8
Hofsteenge J.
Müller DR.
Beer T.
Löffler A.
Richter WJ.
Vliegenhart JFG.
Biochemistry
1994,
33:
13524
For recent reviews on artificial glycosylamino acids, sugar amino acids and combinatorial carbohydrate conjugates see:
9a
Dondoni A.
Marra A.
Chem. Rev.
2000,
100:
4395
9b
Peri F.
Cipolla L.
Forni E.
La Feria B.
Nicotra F.
Chemtracts
2001,
14:
481
9c
Barkley A.
Arya P.
Chem.-Eur. J.
2001,
7:
555
9d
Gruner SAW.
Locardi E.
Lohof E.
Kessler H.
Chem. Rev.
2002,
102:
491
9e
Schweizer F.
Angew. Chem. Int. Ed.
2002,
41:
230 ; and references cited therein
10a
Saha UK.
Roy R.
Tetrahedron Lett.
1995,
36:
3635
10b
Saha U.
Roy R.
Tetrahedron Lett.
1997,
38:
7697
10c
Kim JM.
Roy R.
Tetrahedron Lett.
1997,
38:
3487
10d
Kim JM.
Roy R.
Carbohydr. Res.
1997,
298:
173
11a
Hoffmann M.
Burkhart F.
Hessler G.
Kessler H.
Helv. Chim. Acta
1996,
79:
1519
11b
Frey O.
Hoffmann M.
Kessler H.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2026
12a
Marcaurelle LA.
Rodriguez EC.
Bertozzi CR.
Tetrahedron Lett.
1998,
39:
8417
12b
Peri F.
Cipolla L.
Rescigno M.
La Ferla B.
Nicotra F.
Bioconjugate Chem.
2001,
12:
325
12c
Cipolla L.
Rescigno M.
Leone A.
Peri F.
La Ferla B.
Nicotra F.
Bioorg. Med. Chem. Lett.
2002,
10:
1639
13 It is noteworthy that these β-galactosyl amides are not accessible via acylation of the corresponding galactosyl-amine.
[14 ]
14
Schweizer F.
Lohse A.
Otter A.
Hindsgaul O.
Synlett
2001,
1434
15
Lohse A.
Schweizer F.
Hindsgaul O.
Comb. Chem. High Throughput Screening
2002,
5:
389
16
Orsini F.
Di Teodoro E.
Tetrahedron: Asymmetry
2003,
14:
2521
17 Yield calculation is based on the addition of the partially protected diamino ester.
18 Products were identified by MS.
19
Bilsky EJ.
Egleton RD.
Mitchell SA.
Palian MM.
Daid P.
Huber JD.
Jones H.
Yamamura HI.
Janders H.
Davis TP.
Porreca F.
Hruby VJ.
Polt R.
J. Med. Chem.
2000,
43:
2586
20 Yields are based on isolated amount after reverse phase HPLC purification. Characteristic data for 22 : 1 H NMR (600 MHz, CD3 OD, r.t.): δ = 3.93 (dd, J = 3.03 Hz, J < 1 Hz, H-6Gal ), 4.02 (d, J = 9.8 Hz, H-4Gal ), 6.80 (d, J = 8.4 Hz, 2 H), 7.15 (d, J = 8.4 Hz, 2 H), 7.20-7.35 (m, 4 H), 7.45-7.53 (m, 2 H), 7.55-7.62 (m, 2 H), 7.82 (d, J = 7.10 Hz, 2 H). MS (ES): m/z calcd [M + H]+ : 1022.48; found: 1022.65.
21
Stott K.
Stonehouse J.
Keeler J.
Hwang TL.
Shaka AJ.
J. Am. Chem. Soc.
1995,
117:
4199
22
Elmore DT.
Guthrie DJS.
Kay G.
Williams CH.
J. Chem. Soc., Perkin Trans. 1
1988,
1051
23 Prepared according to the procedure by: Maetz P.
Rodriguez M.
Tetrahedron Lett.
1997,
38:
4221
24 It has been suggested that incorporation of hydrophilic carbohydrate moieties into opioid peptides renders them amphipathic, promoting exchange between lipid and aqueous phases, which may lead to enhanced blood brain barrier penetration see: Palian MM.
Boguslavky VI.
O’Brien DF.
Polt R.
J. Am. Chem. Soc.
2003,
125:
5823
25 The stereochemistry at the anomeric center in 28 has not yet been determined.
26 We speculate that the axial substituent at the C-4 position in mannose-configurated ulosonic acid 8 and rhamnose-configurated ulosonic acid 16 destabilizes the cyclic form and favors the open ketone form resulting in low yields of the corresponding unnatural glycosyl amino acids (Scheme
[6 ]
).
27
Arya P.
Barkley A.
Randell K.
J. Comb. Chem.
2002,
4:
193
28 A 40 ms gaussian pulse with a 560 ms mixing time was used.
29
Handlon AL.
Fraser-Reid B.
J. Am. Chem. Soc.
1993,
115:
3796
30 Cyanoalanine and nitriles with branching at the β-position have previously been used without success in an intermolecular Ritter reaction (see ref. 29).