Subscribe to RSS
DOI: 10.1055/s-2004-837225
Approaching Highly Enantioselective Reductive Amination
Publication History
Publication Date:
22 December 2004 (online)
Abstract
A longstanding problem in enantioselective catalysis concerns the transformation of prochiral ketones into chiral amines. To date, this reaction is mainly associated with the hydrogenation of imines or enamine derivatives using late transition metal complexes based on chiral P-ligands. However, the one-pot reduction of a suitable intermediate arising from the reaction of the carbonyl compounds and amine would be much more favorable (direct reductive amination), since one step is saved. In this account, we report on the story of the development of chiral Rh-diphosphine catalysts, which can be used for this enantioselective transformation. For example, α-amino acids were prepared by this methodology in up to 98% ee. Before we achieved this goal, all possible products arising from the reaction between carbonyl component and starting amine, like imines, enamines and N,O-acetals, and serving therefore as potential substrates, were successfully subjected to hydrogenation. Apparently, in the direct reductive amination, different substrates may serve as precursors for chiral amine products depending on the starting material and reaction conditions. This matter complicates the rational design of catalysts. Therefore, the use of high-throughput methods for identification of efficient catalysts is recommended.
1 Introduction
2 Hydrogenation of Unsaturated and Saturated Nitrogen Substrates
2.1 Hydrogenation of Imines
2.2 Enantioselective Hydrogenation of Enamines
2.3 Hydrogenation of Saturated Nitrogen Species (N,O-Acetals and Related Compounds)
3 Direct Reductive Amination (DRA) of Carbonyl Compounds
3.1 Nonasymmetric Version
3.2 Enantioselective Direct Reductive Amination
4 Conclusions
Key words
hydrogenation - enantioselective catalysis - rhodium - amines
- 1
Glaser H.Möller F.Pieper G.Schröter R.Spielberger G.Söll H. In Amine, Houben-Weyl Methoden der Organischen ChemieMüller E. Thieme; Stuttgart: 1957. - 2
Abdel-Magid AF.Carson KG.Harris BD.Maryanoff CA.Shah RD. J. Org. Chem. 1996, 61: 3849 and references cited therein - 3
Birtill JJ.Chamberlain M.Hall J.Wilson R.Costello I. In Catalysis of Organic ReactionsHerkes FE. Dekker; New York: 1998. p.255 - 4
Gomez S.Peters JA.Maschmeyer T. Adv. Synth. Catal. 2002, 344: 1037 -
5a
Rylander PN. Catalytic Hydrogenation in Organic Synthesis Academic Press; New York: 1979. -
5b
Rylander PN. Catalytic Hydrogenation over Platinum Metals Academic Press; New York: 1967. -
5c
Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis Wiley; New York: 2001. - 6
Homogeneous Hydrogenation
Chaloner PA.Esteruelas PA.Joó F.Oro LA. Kluwer; Dordrecht: 1993. - For some other reducing agents, see ref. 2. For related examples, see also:
-
7a
Itoh T.Nagata K.Kurihara A.Miyazaki M.Ohsawa M. Tetrahedron Lett. 2002, 43: 3105 -
7b
Han Y.Chorev M. J. Org. Chem. 1999, 64: 1972 -
7c
Miura K.Ootsuka K.Suda S.Nishikori H.Hosomi A. Synlett 2001, 1617 -
7d
Kitamura M.Lee D.Hayashi S.Tanaka S.Yoshimura S. J. Org. Chem. 2002, 67: 8685 and references cited therein - 8
Fine Chemicals through Heterogeneous Catalysis
Sheldon AS.van Bekkum H. Wiley-VCH; Weinheim: 2001. p.384 -
9a
Applied Homogeneous Catalysis with Organometallic Compounds
Vol. 1-2:
Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 1996. -
9b
Transition Metals for Organic Synthesis
Vol. 1-2:
Beller M.Bolm C. Wiley-VCH; Weinheim: 1998. - 10
Markó L.Bakos J. J. Organomet. Chem. 1974, 81: 411 - 11
Klyuev MV.Khidekel MV. Transition Met. Chem. 1980, 5: 134 - 12
Murakami M.Kang J.-W. Bull. Chem. Soc. Jpn. 1963, 36: 763 - 13
Eilbracht P.Bärfacker L.Buss L.Hollmann C.Kitsos-Rzychon BE.Kranemann CL.Rische T.Roggenbuck R.Schmidt A. Chem. Rev. 1999, 99: 3329 - 14
Blaser H.-U.Buser H.-P.Jalett H.-P.Pugin B.Spindler F. Synlett 1999, 867 - 16
Tararov VI.Kadyrov R.Riermeier TH.Holz J.Börner A. Tetrahedron: Asymmetry 1999, 10: 4009 - 17
Inoguchi K.Sakuraba S.Achiwa K. Synlett 1992, 169 - 18
Spindler F.Blaser H.-U. Enantioselective Reduction of C=N Bonds and Enamines with Hydrogen, In Transition Metals for Organic Synthesis Vol. 2:Beller M.Bolm M. Wiley-VCH; Weinheim: 1998. p.69 - For recent publications see:
-
19a
Cobley CJ.Henschke JP. Adv. Synth. Catal. 2003, 345: 195 -
19b
Cahill JP.Lightfoot AP.Goddard AP.Rust J.Guiry PJ. Tetrahedron: Asymmetry 1998, 9: 4307 -
19c
Schnider P.Koch G.Prétôt G.Wang G.Bohnen FM.Krüger C.Pfaltz A. Chem.-Eur. J. 1997, 3: 887 -
20a
Ng Cheon Chan YP.Osborn JA. J. Am. Chem. Soc. 1990, 112: 9400 -
20b
Spindler F.Pugin B.Blaser B. Angew. Chem., Int. Ed. Engl. 1990, 29: 558 -
20c
Sablong R.Osborn JA. Tetrahedron: Asymmetry 1996, 7: 3059 -
20d
Xiao D.Zhang X. Angew. Chem. Int. Ed. 2001, 40: 3425 -
20e
Jiang X.-b.Minnaard AJ.Hessen B.Feringa BL.Duchateau ALL.Andrein JGO.Boogers JAF.de Vries JG. Org. Lett. 2003, 5: 1503 - 21
Tani K.Onouchi J.-i.Yamagata T.Kataoka Y. Chem. Lett. 1995, 955 -
22a
Morimoto T.Achiwa T. Tetrahedron: Asymmetry 1995, 6: 2661 -
22b
Zhu G.Zhang X. Tetrahedron: Asymmetry 1998, 9: 2415 -
23a
Vastag S.Bakos J.Torös J.Takach NE.King RB.Heil B.Marko L. J. Mol. Catal. 1984, 22: 283 -
23b
Becalski AG.Cullen AG.Fryzuk MD.James BR.Kang BR.Rettig SJ. Inorg. Chem. 1991, 30: 5002 - 24
Buriak JM.Osborn JA. Organometallics 1996, 15: 3161 - 25
Lensink C.Rijberg E.de Vries JG. J. Mol. Catal. A: Chem. 1997, 116: 199 - 26
Burk MJ.Feaster JE. J. Am. Chem. Soc. 1992, 114: 6266 - 27
Spindler F.Blaser H.-U. Adv. Synth. Catal. 2001, 343: 68 -
28a
Sablong R.Osborn JA. Tetrahedron Lett. 1996, 37: 4937 -
28b
Broger EA.Burkart W.Hennig M.Scalone M.Schmid R. Tetrahedron: Asymmetry 1998, 9: 4043 -
28c
Guiu E.Muñoz B.Castillón S.Claver C. Adv. Synth. Catal. 2003, 345: 169 - 29
Martorell A.Claver C.Fernandez E. Inorg. Chem. Commun. 2000, 3: 132 -
30a
Ohkuma T.Kitamura M.Noyori R. In Catalytic Asymmetric SynthesisOjima I. Wiley; New York: 2000. p.1 -
30b
Burk MJ.Bienewald F. In Transition Metals for Organic Synthesis Vol. 2:Beller M.Bolm C. Wiley-VCH; Weinheim: 1998. p.13 - 31 For a recent review, see:
Tang W.Zhang X. Chem. Rev. 2003, 203: 3029 - For some recent examples, see:
-
32a
Matsumura K.Shimizu H.Saito T.Kumobayashi H. Adv. Synth. Catal. 2003, 345: 180 -
32b
Reetz MT.Mehler G.Meiswinkel A.Sell T. Tetrahedron Lett. 2002, 43: 7941 -
32c
Li W.Waldkirch JP.Zhang X. J. Org. Chem. 2002, 67: 7618 -
32d
van den Berg M.Haak RM.Minnaard AJ.de Vries AHM.de Vries JG.Feringa BL. Adv. Synth. Catal. 2002, 344: 1003 - 33
Halpern J. In Asymmetric SynthesisMorrison JD. Academic Press; Orlando: 1985. p.41 - 34
Tararov VI.Kadyrov R.Riermeier TH.Holz J.Börner A. Tetrahedron Lett. 2000, 41: 2351 - 35 For a review see:
Yurovskaya MA.Karchava AV. Tetrahedron: Asymmetry 1998, 9: 3331 - 36
Tararov VI.Kadyrov R.Riermeier TH.Börner A. Adv. Synth. Catal. 2002, 344: 200 - 37
Sakura N.Ito K.Sekiya M. Chem. Pharm. Bull. 1972, 20: 1156 - 38
Pohland A.Sullivan HR.McMahon RE. J. Am. Chem. Soc. 1957, 66: 1442 - 39
Tararov VI.Kadyrov R.Riermeier TH.Börner A. Synthesis 2002, 375 - 40
Tararov VI.Kadyrov R.Monsees A.Riermeier TH.Börner A. Adv. Synth. Catal. 2003, 345: 239 - 41
Tararov VI.Kadyrov R.Riermeier TH.Börner A. Chem. Commun. 2000, 1867 - 42
Margalef-Català R.Claver C.Salagre P.Fernández E. Tetrahedron Lett. 2000, 41: 6583 - 43
Tararov VI.Kadyrov VI.Fischer C.Börner A. Synlett 2004, 1961 - 44
Kadyrov R.Riermeier TH.Dingerdissen U.Tararov V.Börner A. J. Org. Chem. 2003, 68: 4067 - 45
Chi Y.Zhou Y.-G.Zhang X. J. Org. Chem. 2003, 68: 4120 - 46
Kadyrov R.Riermeier TH. Angew. Chem. Int. Ed. 2003, 42: 5472 - 47
Williams GD.Pike RA.Wade CE.Wills M. Org. Lett. 2003, 5: 4227 - 48
Tararov VI.Kadyrov R.Riermeier TH.Fischer C.Börner A. Adv. Synth. Catal. 2004, 346: 561
References
Ref. 5c, p. 286.