ABSTRACT
Obesity has reached epidemic levels in industrialized countries and is increasing worldwide. This trend has serious public health consequences, since obesity increases the risk of diabetes, hypertension, heart disease, sleep apnea, cancer, arthritis, cholelithiasis, fatty liver disease, and other complications. Obesity is the result of an imbalance between energy intake and expenditure; hence, an understanding of how gastrointestinal function is integrated with the hormonal regulation of energy balance is pertinent to the pathophysiology of obesity. Nutrients, peptides, and neural afferents from the gut influence the size and frequency of meals and satiety. The long-term regulation of energy stores is mediated primarily through the actions of adiposity hormones, such as leptin and insulin, in the hypothalamus and other neuronal circuits in the brain. Efforts are underway to determine how these peripheral and central pathways may be targeted for treatment of obesity and related diseases.
KEYWORDS
Gastrointestinal system - peptides - nutrients - obesity - adipose tissue - leptin - adiponectin - cytokines
REFERENCES
1
Hedley A A, Ogden C L, Johnson C L, Carroll M D, Curtin L R, Flegal K M.
Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002.
JAMA.
2004;
291
2847-2850
2
Ogden C L, Flegal K M, Carroll M D, Johnson C L.
Prevalence and trends in overweight among US children and adolescents, 1999-2000.
JAMA.
2002;
288
1728-1732
3
Kopelman P G.
Obesity as a medical problem.
Nature.
2000;
404
635-643
4
Calle E E, Thun M J, Petrelli J M, Rodriguez C, Heath Jr C W.
Body-mass index and mortality in a prospective cohort of U. S. adults.
N Engl J Med.
1999;
341
1097-1105
5
Ahima R S, Flier J S.
Adipose tissue as an endocrine organ.
Trends Endocrinol Metab.
2000;
11
327-332
6
Unger R H.
Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome.
Endocrinology.
2003;
144
5159-5165
7
Barsh G S, Farooqi I S, O'Rahilly S.
Genetics of body-weight regulation.
Nature.
2000;
404
644-651
8
Zimmet P, Alberti K G, Shaw J.
Global and societal implications of the diabetes epidemic.
Nature.
2001;
414
782-787
9
Kennedy G C.
The role of depot fat in the hypothalamic control of food intake in the rat.
Proc R Soc Lond B Biol Sci.
1953;
140
578-596
10
Harris R B, Martin R J.
Specific depletion of body fat in parabiotic partners of tube-fed obese rats.
Am J Physiol.
1984;
247
R380-R386
11
Hervey G R.
The effects of lesions in the hypothalamus in parabiotic rats.
J Physiol.
1959;
145
336-352
12
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M.
Positional cloning of the mouse obese gene and its human homologue.
Nature.
1994;
372
425-432
, Erratum in:
Nature.
1995;
374
479
13
Chen H, Charlat O, Tartaglia L A et al..
Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice.
Cell.
1996;
84
491-495
14
Flier J S.
Obesity wars: molecular progress confronts an expanding epidemic.
Cell.
2004;
116
337-350
15
Elmquist J K, Elias C F, Saper C B.
From lesions to leptin: hypothalamic control of food intake and body weight.
Neuron.
1999;
22
221-232
16
Ahima R S, Osei S Y.
Molecular regulation of eating behavior: new insights and prospects for therapeutic strategies.
Trends Mol Med.
2001;
7
205-213
17
Mayer J.
Glucostatic mechanism of regulation of food intake.
N Engl J Med.
1953;
249
13-16
18
Thompson D A, Campbell R G.
Hunger in humans induced by 2-deoxy-D-glucose: glucoprivic control of taste preference and food intake.
Science.
1977;
198
1065-1068
19
Oomura Y, Ono T, Ooyama H, Wayner M J.
Glucose and osmosensitive neurones of the rat hypothalamus.
Nature.
1969;
222
282-284
20
Bergen H T, Monkman N, Mobbs C V.
Injection with gold thioglucose impairs sensitivity to glucose: evidence that glucose-responsive neurons are important for long-term regulation of body weight.
Brain Res.
1996;
734
332-336
21
Novin D, VanderWeele D A, Rezek M.
Infusion of 2-deoxy-D-glucose into the hepatic-portal system causes eating: evidence for peripheral glucoreceptors.
Science.
1973;
181
858-860
22
Bray G A.
Amino acids, protein, and body weight.
Obes Res.
1997;
5
373-376
23
Fernstrom J D, Wurtman R J.
Brain serotonin content: physiological dependence on plasma tryptophan levels.
Science.
1971;
173
149-152
24
Kasser T R, Harris R B, Martin R J.
Level of satiety: fatty acid and glucose metabolism in three brain sites associated with feeding.
Am J Physiol.
1985;
248
R447-R452
25
Sergeyev V, Broberger C, Gorbatyuk O, Hokfelt T.
Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus.
Neuroreport.
2000;
11
117-121
26
Friedman M I, Harris R B, Ji H, Ramirez I, Tordoff M G.
Fatty acid oxidation affects food intake by altering hepatic energy status.
Am J Physiol.
1999;
276
R1046-R1053
27
Nagase H, Bray G A, York D A.
Effects of pyruvate and lactate on food intake in rat strains sensitive and resistant to dietary obesity.
Physiol Behav.
1996;
59
555-560
28
Tso P, Liu M, Kalogeris T J.
The role of apolipoprotein A-IV in food intake regulation.
J Nutr.
1999;
129
150-156
29
Kojima M, Hosoda H, Matsuo H, Kangawa K.
Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor.
Trends Endocrinol Metab.
2001;
12
118-122
30
Tschop M, Smiley D L, Heiman M L.
Ghrelin induces adiposity in rodents.
Nature.
2000;
407
908-913
31
Cummings D E, Weigle D S, Frayo R S et al..
Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.
N Engl J Med.
2002;
346
1623-1630
32
Holdstock C, Engstrom B E, Ohrvall M, Lind L, Sundbom M, Karlsson F A.
Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans.
J Clin Endocrinol Metab.
2003;
88
3177-3183
33
Cowley M A, Smith R G, Diano S et al..
The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.
Neuron.
2003;
37
649-661
34
Chen H Y, Trumbauer M E, Chen A S et al..
Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein.
Endocrinology.
2004;
145
2607-2612
35
Sun Y, Ahmed S, Smith R G.
Deletion of ghrelin impairs neither growth nor appetite.
Mol Cell Biol.
2003;
23
7973-7981
36
Sun Y, Wang P, Zheng H, Smith R G.
Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor.
Proc Natl Acad Sci USA.
2004;
101
4679-4684
37
Smith G P, Gibbs J.
Satiating effect of cholecystokinin.
Ann N Y Acad Sci.
1994;
713
236-241
38
Moran T H, Katz L F, Plata-Salaman C R, Schwartz G J.
Disordered food intake and obesity in rats lacking cholecystokinin A receptors.
Am J Physiol.
1998;
274
R618-R625
39
Kopin A S, Mathes W F, McBride E W et al..
The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight.
J Clin Invest.
1999;
103
383-391
, Erratum in: J Clin Invest 1999;103:759
40
Berglund M M, Hipskind P A, Gehlert D R.
Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes [review].
Exp Biol Med (Maywood).
2003;
228
217-244
41
Batterham R L, Cowley M A, Small C J et al..
Gut hormone PYY(3-36) physiologically inhibits food intake.
Nature.
2002;
418
650-654
42
Batterham R L, Cohen M A, Ellis S M et al..
Inhibition of food intake in obese subjects by peptide YY3-36.
N Engl J Med.
2003;
349
941-948
43
Tschop M, Castaneda T R, Joost H G et al..
Physiology: does gut hormone PYY3-36 decrease food intake in rodents?.
Nature.
2004;
430
165-167
, Erratum in
Nature.
2004;
431
1038
, Withcomb, DC [corrected to Whitcomb, DC]
44
Clark J T, Sahu A, Kalra P S, Balasubramaniam A, Kalra S P.
Neuropeptide Y (NPY)-induced feeding behavior in female rats: comparison with human NPY ([Met17]NPY), NPY analog ([norLeu4]NPY) and peptide YY.
Regul Pept.
1987;
17
31-39
45
Stanley B G, Daniel D R, Chin A S, Leibowitz S F.
Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion.
Peptides.
1985;
6
1205-1211
46
Kanatani A, Mashiko S, Murai N et al..
Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice.
Endocrinology.
2000;
141
1011-1016
47
Jia B Q, Taylor I L.
Failure of pancreatic polypeptide release in congenitally obese mice.
Gastroenterology.
1984;
87
338-343
48
Asakawa A, Inui A, Yuzuriha H et al..
Characterization of the effects of pancreatic polypeptide in the regulation of energy balance.
Gastroenterology.
2003;
124
1325-1336
49
Ueno N, Inui A, Iwamoto M et al..
Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice.
Gastroenterology.
1999;
117
1427-1432
50
Batterham R L, Le Roux C W, Cohen M A et al..
Pancreatic polypeptide reduces appetite and food intake in humans.
J Clin Endocrinol Metab.
2003;
88
3989-3992
51
Berntson G G, Zipf W B, O'Dorisio T M, Hoffman J A, Chance R E.
Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome.
Peptides.
1993;
14
497-503
52
Holst J J.
Glucagon-like Peptide 1 (GLP-1): an intestinal hormone, signalling nutritional abundance, with an unusual therapeutic potential.
Trends Endocrinol Metab.
1999;
10
229-235
53
Verdich C, Flint A, Gutzwiller J P et al..
A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans.
J Clin Endocrinol Metab.
2001;
86
4382-4389
54
Nauck M A, Kleine N, Orskov C, Holst J J, Willms B, Creutzfeldt W.
Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (noninsulin-dependent) diabetic patients.
Diabetologia.
1993;
36
741-744
55
Turton M D, O'Shea D, Gunn I et al..
A role for glucagon-like peptide-1 in the central regulation of feeding.
Nature.
1996;
379
69-72
56
Drucker D J, Lovshin J, Baggio L et al..
New developments in the biology of the glucagon-like peptides GLP-1 and GLP-2.
Ann N Y Acad Sci.
2000;
921
226-232
57
Scrocchi L A, Hill M E, Saleh J, Perkins B, Drucker D J.
Elimination of glucagon-like peptide 1R signaling does not modify weight gain and islet adaptation in mice with combined disruption of leptin and GLP-1 action.
Diabetes.
2000;
49
1552-1560
58
Tang-Christensen M, Larsen P J, Thulesen J, Romer J, Vrang N.
The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake.
Nat Med.
2000;
6
802-807
59
Dakin C L, Gunn I, Small C J et al..
Oxyntomodulin inhibits food intake in the rat.
Endocrinology.
2001;
142
4244-4250
60
Baggio L L, Huang Q, Brown T J, Drucker D J.
Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure.
Gastroenterology.
2004;
127
546-558
61
Cohen M A, Ellis S M, Le Roux C W et al..
Oxyntomodulin suppresses appetite and reduces food intake in humans.
J Clin Endocrinol Metab.
2003;
88
4696-4701
62
Meier J J, Nauck M A, Schmidt W E, Gallwitz B.
Gastric inhibitory polypeptide: the neglected incretin revisited.
Regul Pept.
2002;
107
1-13
63
Gault V A, Flatt P R, O'Harte F P.
Glucose-dependent insulinotropic polypeptide analogues and their therapeutic potential for the treatment of obesity-diabetes.
Biochem Biophys Res Commun.
2003;
308
207-213
64
Gault V A, O'Harte F P, Flatt P R.
Glucose-dependent insulinotropic polypeptide (GIP): anti-diabetic and anti-obesity potential?.
Neuropeptides.
2003;
37
253-263
65
Miyawaki K, Yamada Y, Ban N et al..
Inhibition of gastric inhibitory polypeptide signaling prevents obesity.
Nat Med.
2002;
8
738-742
66
Yamada K, Wada E, Santo-Yamada Y, Wada K.
Bombesin and its family of peptides: prospects for the treatment of obesity.
Eur J Pharmacol.
2002;
440
281-290
67
Gutzwiller J P, Drewe J, Hildebrand P, Rossi L, Lauper J Z, Beglinger C.
Effect of intravenous human gastrin-releasing peptide on food intake in humans.
Gastroenterology.
1994;
106
1168-1173
68
Ohki-Hamazaki H, Watase K, Yamamoto K et al..
Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity.
Nature.
1997;
390
165-169
69
Hoppener J W, Ahren B, Lips C J.
Islet amyloid and type 2 diabetes mellitus.
N Engl J Med.
2000;
343
411-419
70
Reda T K, Geliebter A, Pi-Sunyer F X.
Amylin, food intake, and obesity.
Obes Res.
2002;
10
1087-1091
71
Erlanson-Albertsson C, York D.
Enterostatin-a peptide regulating fat intake.
Obes Res.
1997;
5
360-372
72
Lin L, York D A.
Amygdala enterostatin induces c-Fos expression in regions of hypothalamus that innervate the PVN.
Brain Res.
2004;
1020
147-153
73
Ahima R S, Flier J S.
Leptin.
Annu Rev Physiol.
2000;
62
413-437
74
Coleman D L.
Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice.
Diabetologia.
1978;
14
141-148
75
Flier J S.
Clinical review 94: What's in a name? In search of leptin's physiologic role.
J Clin Endocrinol Metab.
1998;
83
1407-1413
76
Erickson J C, Hollopeter G, Palmiter R D.
Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y.
Science.
1996;
274
1704-1707
77
Segal-Lieberman G, Bradley R L, Kokkotou E et al..
Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype.
Proc Natl Acad Sci U S A.
2003;
100
10085-10090
78
Ahima R, Osei S Y.
Leptin and appetite control in lipodystrophy.
J Clin Endocrinol Metab.
2004;
89
4254-4257
79
Howard J K, Cave B J, Oksanen L J, Tzameli I, Bjorback C, Flier J S.
Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3.
Nat Med.
2004;
10
734-738
80
Mori H, Hanada R, Hanada T et al..
Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity.
Nat Med.
2004;
10
739-743
81
Zabolotny J M, Bence-Hanulec K K, Stricker-Krongrad A et al..
PTP1B regulates leptin signal transduction in vivo.
Dev Cell.
2002;
2
489-495
82
Cheng A, Uetani N, Simoncic P D et al..
Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B.
Dev Cell.
2002;
2
497-503
83
Schwartz M W, Figlewicz D P, Baskin D G, Woods S C, Porte Jr D.
Insulin in the brain: a hormonal regulator of energy balance.
Endocr Rev.
1992;
13
387-414
84
Benoit S C, Air E L, Coolen L M et al..
The catabolic action of insulin in the brain is mediated by melanocortins.
J Neurosci.
2002;
22
9048-9052
85
Bruning J C, Gautam D, Burks D J et al..
Role of brain insulin receptor in control of body weight and reproduction.
Science.
2000;
289
2122-2125
86
Niswender K D, Morrison C D, Clegg D J et al..
Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia.
Diabetes.
2003;
52
227-231
87
Niswender K D, Schwartz M W.
Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities.
Front Neuroendocrinol.
2003;
24
1-10
88
Berg A H, Combs T P, Scherer P E.
ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism.
Trends Endocrinol Metab.
2002;
13
84-89
89
Maeda N, Shimomura I, Kishida K et al..
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.
Nat Med.
2002;
8
731-737
90
Kubota N, Terauchi Y, Yamauchi T et al..
Disruption of adiponectin causes insulin resistance and neointimal formation.
J Biol Chem.
2002;
277
25863-25866
91
Yamauchi T, Kamon J, Minokoshi Y et al..
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.
Nat Med.
2002;
8
1288-1295
92
Goldstein B J, Scalia R.
Adiponectin: a novel adipokine linking adipocytes and vascular function.
J Clin Endocrinol Metab.
2004;
89
2563-2568
93
Yamauchi T, Kamon J, Ito Y et al..
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.
Nature.
2003;
423
762-769
94
Hug C, Wang J, Ahmad N S, Gogan J S, Tsao T S, Lodish H F.
T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin.
Proc Natl Acad Sci U S A.
2004;
101
10308-10313
95
Steppan C M, Lazar M A.
The current biology of resistin.
J Intern Med.
2004;
255
439-447
96
Rajala M W, Qi Y, Patel H R et al..
Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting.
Diabetes.
2004;
53
1671-1679
97
Steppan C M, Bailey S T, Bhat S et al..
The hormone resistin links obesity to diabetes.
Nature.
2001;
409
307-312
98
Rajala M W, Obici S, Scherer P E, Rossetti L.
Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production.
J Clin Invest.
2003;
111
225-230
99
Banerjee R R, Rangwala S M, Shapiro J S et al..
Regulation of fasted blood glucose by resistin.
Science.
2004;
303
1195-1198
100
Wellen K E, Hotamisligil G S.
Obesity-induced inflammatory changes in adipose tissue.
J Clin Invest.
2003;
112
1785-1788
101
Moller D E.
Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes.
Trends Endocrinol Metab.
2000;
11
212-217
102
Wallenius V, Wallenius K, Ahren B et al..
Interleukin-6-deficient mice develop mature-onset obesity.
Nat Med.
2002;
8
75-79
Rexford S AhimaM.D. Ph.D.
University of Pennsylvania School of Medicine, Division of Endocrinology, Diabetes and Metabolism
764 Clinical Research Building, 415 Curie Blvd
Philadelphia, PA 19104
Email: ahima@mail.med.upenn.edu