ABSTRACT
Apolipoprotein E (apoE) is a major constituent of lipoproteins in the plasma and in the brain. There are three common apoE isoforms, termed E2, E3, and E4. By virtue of its ability to bind to lipoprotein receptors, apoE plays a key role in the metabolism of triglyceride-rich lipoproteins in the plasma. Homozygous carriers of apoE2 have an increased risk to develop type III hyperlipoproteinemia, whereas apoE4 is associated with elevated levels of low-density lipoprotein cholesterol. In the brain, apoE is associated with cholesterol-rich lipoproteins and is involved in the transport of cholesterol to neurons. The genetic polymorphism of apoE is among the strongest determinants of the risk and mean age of onset of Alzheimer's disease. The mechanism by which apoE isoforms differentially contribute to disease expression is not known.
KEYWORDS
Apolipoprotein E - Alzheimer's disease - atherosclerosis - amyloid
REFERENCES
-
1
Sloane P D, Zimmerman S, Suchindran C et al..
The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances.
Annu Rev Public Health.
2002;
23
213-231
-
2
Yankner B A.
A century of cognitive decline.
Nature.
2000;
404
125
-
3
Lautenschlager N T, Cupples L A, Rao V S et al..
Risk of dementia among relatives of Alzheimer's disease patients in the MIRAGE study: what is in store for the oldest old?.
Neurology.
1996;
46
641-650
-
4
Mohs R C, Breitner J C, Silverman J M, Davis K L.
Alzheimer's disease. Morbid risk among first-degree relatives approximates 50% by 90 years of age.
Arch Gen Psychiatry.
1987;
44
405-408
-
5
Ott A, Slooter A J, Hofman A et al..
Smoking and risk of dementia and Alzheimer's disease in a population-based cohort study: the Rotterdam Study.
Lancet.
1998;
351
1840-1843
-
6
Ott A, Stolk R P, van Harskamp F et al..
Diabetes mellitus and the risk of dementia: the Rotterdam Study.
Neurology.
1999;
53
1937-1942
-
7
Kivipelto M, Helkala E L, Laakso M P et al..
Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study.
BMJ.
2001;
322
1447-1451
-
8
St George-Hyslop P H.
Molecular genetics of Alzheimer's disease.
Biol Psychiatry.
2000;
47
183-199
-
9
Khachaturian Z S.
Diagnosis of Alzheimer's disease.
Arch Neurol.
1985;
42
1097-1105
-
10
Tierney M C, Fisher R H, Lewis A J et al..
The NINCDS-ADRDA Work Group criteria for the clinical diagnosis of probable Alzheimer's disease: a clinicopathologic study of 57 cases.
Neurology.
1988;
38
359-364
-
11
Haass C, Schlossmacher M G, Hung A Y et al..
Amyloid beta-peptide is produced by cultured cells during normal metabolism.
Nature.
1992;
359
322-325
-
12
Shoji M, Golde T E, Ghiso J et al..
Production of the Alzheimer amyloid beta protein by normal proteolytic processing.
Science.
1992;
258
126-129
-
13
Hung A Y, Selkoe D J.
Selective ectodomain phosphorylation and regulated cleavage of beta-amyloid precursor protein.
EMBO J.
1994;
13
534-542
-
14
Walter J, Capell A, Hung A Y et al..
Ectodomain phosphorylation of beta-amyloid precursor protein at two distinct cellular locations.
J Biol Chem.
1997;
272
1896-1903
-
15
Weidemann A, Konig G, Bunke D et al..
Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein.
Cell.
1989;
57
115-126
-
16
Kang J, Lemaire H G, Unterbeck A et al..
The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor.
Nature.
1987;
325
733-736
-
17
Qiu W Q, Ferreira A, Miller C, Koo E H, Selkoe D J.
Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner.
J Neurosci.
1995;
15
2157-2167
-
18
Schubert D, Jin L W, Saitoh T, Cole G.
The regulation of amyloid beta protein precursor secretion and its modulatory role in cell adhesion.
Neuron.
1989;
3
689-694
-
19
Sinha S, Dovey H F, Seubert P et al..
The protease inhibitory properties of the Alzheimer's beta-amyloid precursor protein.
J Biol Chem.
1990;
265
8983-8985
-
20
Smith R P, Higuchi D A, Broze Jr G J.
Platelet coagulation factor XIa-inhibitor, a form of Alzheimer amyloid precursor protein.
Science.
1990;
248
1126-1128
-
21
Buxbaum J D, Liu K N, Luo Y et al..
Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor.
J Biol Chem.
1998;
273
27765-27767
-
22
Koike H, Tomioka S, Sorimachi H et al..
Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein.
Biochem J.
1999;
343
371-375
-
23
Lammich S, Kojro E, Postina R et al..
Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease.
Proc Natl Acad Sci U S A.
1999;
96
3922-3927
-
24
Esch F S, Keim P S, Beattie E C et al..
Cleavage of amyloid beta peptide during constitutive processing of its precursor.
Science.
1990;
248
1122-1124
-
25
Sisodia S S, Koo E H, Beyreuther K, Unterbeck A, Price D L.
Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing.
Science.
1990;
248
492-495
-
26
Hussain I, Powell D, Howlett D R et al..
Identification of a novel aspartic protease (Asp 2) as beta-secretase.
Mol Cell Neurosci.
1999;
14
419-427
-
27
Sinha S, Anderson J P, Barbour R et al..
Purification and cloning of amyloid precursor protein beta-secretase from human brain.
Nature.
1999;
402
537-540
-
28
Vassar R, Bennett B D, Babu-Khan S et al..
Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE.
Science.
1999;
286
735-741
-
29
Yan R, Bienkowski M J, Shuck M E et al..
Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity.
Nature.
1999;
402
533-537
-
30
Seubert P, Oltersdorf T, Lee M G et al..
Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide.
Nature.
1993;
361
260-263
-
31
Haass C, Koo E H, Mellon A, Hung A Y, Selkoe D J.
Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments.
Nature.
1992;
357
500-503
-
32
Gravina S A, Ho L, Eckman C B et al..
Amyloid beta protein (A beta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43).
J Biol Chem.
1995;
270
7013-7016
-
33
Iwatsubo T, Odaka A, Suzuki N et al..
Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43).
Neuron.
1994;
13
45-53
-
34
Jarrett J T, Berger E P, Lansbury Jr P T.
The C-terminus of the beta protein is critical in amyloidogenesis.
Ann N Y Acad Sci.
1993;
695
144-148
-
35
Tamaoka A, Kondo T, Odaka A et al..
Biochemical evidence for the long-tail form (A beta 1-42/43) of amyloid beta protein as a seed molecule in cerebral deposits of Alzheimer's disease.
Biochem Biophys Res Commun.
1994;
205
834-842
-
36
Funato H, Yoshimura M, Kusui K et al..
Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer's disease.
Am J Pathol.
1998;
152
1633-1640
-
37
Selkoe D J.
Alzheimer's disease: genes, proteins, and therapy.
Physiol Rev.
2001;
81
741-766
-
38
Selkoe D J.
Alzheimer's disease: genotypes, phenotypes, and treatments.
Science.
1997;
275
630-631
-
39
Strittmatter W J, Roses A D.
Apolipoprotein E and Alzheimer disease.
Proc Natl Acad Sci U S A.
1995;
92
4725-4727
-
40
Grundke-Iqbal I, Iqbal K, Tung Y C et al..
Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology.
Proc Natl Acad Sci U S A.
1986;
83
4913-4917
-
41
Kosik K S, Joachim C L, Selkoe D J.
Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease.
Proc Natl Acad Sci U S A.
1986;
83
4044-4048
-
42
Nukina N, Ihara Y.
One of the antigenic determinants of paired helical filaments is related to tau protein.
J Biochem (Tokyo).
1986;
99
1541-1544
-
43
Gomez-Isla T, Hollister R, West H et al..
Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease.
Ann Neurol.
1997;
41
17-24
-
44
Hyman B T, Van Horsen G W, Damasio A R, Barnes C L.
Alzheimer's disease: cell-specific pathology isolates the hippocampal formation.
Science.
1984;
225
1168-1170
-
45
Gomez-Isla T, West H L, Rebeck G W et al..
Clinical and pathological correlates of apolipoprotein E epsilon 4 in Alzheimer's disease.
Ann Neurol.
1996;
39
62-70
-
46
Hardy J.
Amyloid, the presenilins and Alzheimer's disease.
Trends Neurosci.
1997;
20
154-159
-
47
Borchelt D R, Thinakaran G, Eckman C B et al..
Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo.
Neuron.
1996;
17
1005-1013
-
48
Citron M, Westaway D, Xia W et al..
Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice.
Nat Med.
1997;
3
67-72
-
49
Duff K, Eckman C, Zehr C et al..
Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1.
Nature.
1996;
383
710-713
-
50
Scheuner D, Eckman C, Jensen M et al..
Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease.
Nat Med.
1996;
2
864-870
-
51
Edbauer D, Winkler E, Regula J T et al..
Reconstitution of gamma-secretase activity.
Nat Cell Biol.
2003;
5
486-488
-
52
Strittmatter W J, Saunders A M, Schmechel D et al..
Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.
Proc Natl Acad Sci U S A.
1993;
90
1977-1981
-
53
Farrer L A, Cupples L A, Haines J L et al..
Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium.
JAMA.
1997;
278
1349-1356
-
54
Rubinsztein D C, Easton D F.
Apolipoprotein E genetic variation and Alzheimer's disease. a meta-analysis.
Dement Geriatr Cogn Disord.
1999;
10
199-209
-
55
Wilson C, Wardell M R, Weisgraber K H, Mahley R W, Agard D A.
Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E.
Science.
1991;
252
1817-1822
-
56
Marz W, Peschke B, Ruzicka V et al..
Type III hyperlipoproteinemia acquired by liver transplantation.
Transplantation.
1993;
55
284-288
-
57
Garcia M A, Vazquez J, Gimenez C, Valdivieso F, Zafra F.
Transcription factor AP-2 regulates human apolipoprotein E gene expression in astrocytoma cells.
J Neurosci.
1996;
16
7550-7556
-
58
Nakai M, Kawamata T, Taniguchi T, Maeda K, Tanaka C.
Expression of apolipoprotein E mRNA in rat microglia.
Neurosci Lett.
1996;
211
41-44
-
59
Zannis V I, Breslow J L.
Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification.
Biochemistry.
1981;
20
1033-1041
-
60
Beffert U, Poirier J.
Apolipoprotein E, plaques, tangles and cholinergic dysfunction in Alzheimer's disease.
Ann N Y Acad Sci.
1996;
777
166-174
-
61
Nagy Z, Esiri M M, Jobst K A et al..
Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer's disease.
Neuroscience.
1995;
69
757-761
-
62
Ohm T G, Kirca M, Bohl J et al..
Apolipoprotein E polymorphism influences not only cerebral senile plaque load but also Alzheimer-type neurofibrillary tangle formation.
Neuroscience.
1995;
66
583-587
-
63
Schmechel D E, Saunders A M, Strittmatter W J et al..
Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.
Proc Natl Acad Sci U S A.
1993;
90
9649-9653
-
64
Fredrickson D S, Levy R I, Lees R S.
Fat transport in lipoproteins-an integrated approach to mechanisms and disorders.
N Engl J Med.
1967;
276
273-281
, concl
-
65
Fredrickson D S, Levy R I, Lees R S.
Fat transport in lipoproteins-an integrated approach to mechanisms and disorders.
N Engl J Med.
1967;
276
215-225
, contd
-
66
Fredrickson D S, Levy R I, Lees R S.
Fat transport in lipoproteins-an integrated approach to mechanisms and disorders.
N Engl J Med.
1967;
276
148-156
, contd
-
67
Fredrickson D S, Levy R I, Lees R S.
Fat transport in lipoproteins-an integrated approach to mechanisms and disorders.
N Engl J Med.
1967;
276
94-103
, contd
-
68
Fredrickson D S, Levy R I, Lees R S.
Fat transport in lipoproteins-an integrated approach to mechanisms and disorders.
N Engl J Med.
1967;
276
34-42
, contd
-
69
Mann W A, Meyer N, Weber W et al..
Apolipoprotein E isoforms and rare mutations: parallel reduction in binding to cells and to heparin reflects severity of associated type III hyperlipoproteinemia.
J Lipid Res.
1995;
36
517-525
-
70
Marz W, Hoffmann M M, Scharnagl H et al..
Apolipoprotein E2 (Arg136→Cys) mutation in the receptor binding domain of apoE is not associated with dominant type III hyperlipoproteinemia.
J Lipid Res.
1998;
39
658-669
-
71
Koch S, Donarski N, Goetze K et al..
Characterization of four lipoprotein classes in human cerebrospinal fluid.
J Lipid Res.
2001;
42
1143-1151
-
72
Gong J S, Kobayashi M, Hayashi H et al..
Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice.
J Biol Chem.
2002;
277
29919-29926
-
73
Sun Y, Wu S, Bu G et al..
Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins.
J Neurosci.
1998;
18
3261-3272
-
74
Strittmatter W J, Weisgraber K H, Huang D Y et al..
Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease.
Proc Natl Acad Sci U S A.
1993;
90
8098-8102
-
75
Wisniewski T, Golabek A, Matsubara E, Ghiso J, Frangione B.
Apolipoprotein E: binding to soluble Alzheimer's beta-amyloid.
Biochem Biophys Res Commun.
1993;
192
359-365
-
76
Chan W, Fornwald J, Brawner M, Wetzel R.
Native complex formation between apolipoprotein E isoforms and the Alzheimer's disease peptide A beta.
Biochemistry.
1996;
35
7123-7130
-
77
Yang D S, Smith J D, Zhou Z, Gandy S E, Martins R N.
Characterization of the binding of amyloid-beta peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma.
J Neurochem.
1997;
68
721-725
-
78
Zhou Z, Smith J D, Greengard P, Gandy S.
Alzheimer amyloid-beta peptide forms denaturant-resistant complex with type epsilon 3 but not type epsilon 4 isoform of native apolipoprotein E.
Mol Med.
1996;
2
175-180
-
79
Scharnagl H, Tisljar U, Winkler K et al..
The betaA4 amyloid peptide complexes to and enhances the uptake of beta-very low density lipoproteins by the low density lipoprotein receptor-related protein and heparan sulfate proteoglycans pathway.
Lab Invest.
1999;
79
1271-1286
-
80
Winkler K, Scharnagl H, Tisljar U et al..
Competition of Abeta amyloid peptide and apolipoprotein E for receptor-mediated endocytosis.
J Lipid Res.
1999;
40
447-455
-
81
Bjorkhem I, Lutjohann D, Breuer O, Sakinis A, Wennmalm A.
Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro.
J Biol Chem.
1997;
272
30178-30184
-
82
Lutjohann D, Breuer O, Ahlborg G et al..
Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation.
Proc Natl Acad Sci U S A.
1996;
93
9799-9804
-
83
Pitas R E, Boyles J K, Lee S H, Foss D, Mahley R W.
Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins.
Biochim Biophys Acta.
1987;
917
148-161
-
84
Pitas R E, Boyles J K, Lee S H, Hui D, Weisgraber K H.
Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain.
J Biol Chem.
1987;
262
14352-14360
-
85
Janowski B A, Willy P J, Devi T R, Falck J R, Mangelsdorf D J.
An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha.
Nature.
1996;
383
728-731
-
86
Lehmann J M, Kliewer S A, Moore L B et al..
Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway.
J Biol Chem.
1997;
272
3137-3140
-
87
Kolsch H, Ludwig M, Lutjohann D, Rao M L.
Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17beta.
J Neural Transm.
2001;
108
475-488
-
88
Papassotiropoulos A, Lutjohann D, Bagli M et al..
24S-Hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia.
J Psychiatr Res.
2002;
36
27-32
-
89
Bogdanovic N, Bretillon L, Lund E G et al..
On the turnover of brain cholesterol in patients with Alzheimer's disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells.
Neurosci Lett.
2001;
314
45-48
-
90
Bretillon L, Lutjohann D, Stahle L et al..
Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface.
J Lipid Res.
2000;
41
840-845
Tatjana StojakovicM.D.
Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz
Auenbruggerplatz 15, A-8036 Graz, Austria