ABSTRACT
During most of gestation, the fetal adrenal gland is almost solely dedicated to the production of dehydroepiandrosterone sulfate (DHEA-S). This specialized ability of the fetal adrenal is unique to primates and occurs because of a specialized fetal zone that composes the bulk of the fetal adrenal gland. Morphologically and physiologically, the human fetal adrenal (HFA) glands are remarkable organs. The glands at term are almost the size of the fetal kidney due in large part to the presence of the fetal zone, which at term produces more steroid than is normally secreted by adrenal glands of the adult. Much of the steroid released by the fetal zone is DHEA-S, which is used by the placenta to produce estrogens. Herein, we review the features of the HFA gland, including its impressive ability to synthesize large amounts of adrenal androgens for use by the placenta to produce estrogens.
KEYWORDS
Fetal adrenal - DHEA - CRH - ACTH - cortisol
REFERENCES
1
Carr B R, Simpson E R.
Lipoprotein utilization and cholesterol synthesis by the human fetal adrenal gland.
Endocr Rev.
1981;
2
306-326
2
Elliott J R, Armour R G.
The development of the cortex in the human suprarenal gland and its condition in hemicephaly.
J Pathol.
1911;
15
481-496
3
Mesiano S, Jaffe R B.
Developmental and functional biology of the primate fetal adrenal cortex.
Endocr Rev.
1997;
18
378-403
4
Pepe G J, Albrecht E D.
Regulation of the primate fetal adrenal cortex.
Endocr Rev.
1990;
11
151-176
5
Narasaka T, Suzuki T, Moriya T, Sasano H.
Temporal and spatial distribution of corticosteroidogenic enzymes immunoreactivity in developing human adrenal.
Mol Cell Endocrinol.
2001;
174
111-120
6
Mesiano S, Coulter C L, Jaffe R B.
Localization of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17-α-hydroxylase/17,20-lyase, and 3-β-hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: reappraisal of functional zonation.
J Clin Endocrinol Metab.
1993;
77
1184-1189
7
Coulter C L, Goldsmith P C, Mesiano S et al..
Functional maturation of the primate fetal adrenal in vivo. II. Ontogeny of corticosteroid synthesis is dependent upon specific zonal expression of 3β-hydroxysteroid dehydrogenase/isomerase.
Endocrinology.
1996;
137
4953-4959
8
Suzuki T, Sasano H, Takeyama J et al..
Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies.
Clin Endocrinol (Oxf).
2000;
53
739-747
9
Doody K M, Carr B R, Rainey W E et al..
β-hydroxysteroid dehydrogenase/isomerase in the fetal zone and neocortex of the human fetal adrenal gland.
Endocrinology.
1990;
126
2487-2492
10
Rehman K S, Carr B R, Rainey W E.
Profiling the steroidogenic pathway in human fetal and adult adrenals.
J Soc Gynecol Investig.
2003;
10
372-380
11
Rainey W E, Carr B R, Wang Z N, Parker Jr C R.
Gene profiling of human fetal and adult adrenals.
J Endocrinol.
2001;
171
209-215
12
Rainey W E, Parker Jr C R, Rehman K, Carr B R.
The adrenal genetic puzzle: how do the fetal and adult pieces differ?.
Endocr Res.
2002;
28
611-622
13
Han V K, Lund P K, Lee D C, D'Ercole A J.
Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution.
J Clin Endocrinol Metab.
1988;
66
422-429
14
Mesiano S, Katz S L, Lee J Y, Jaffe R B.
Insulin-like growth factors augment steroid production and expression of steroidogenic enzymes in human fetal adrenal cortical cells: implications for adrenal androgen regulation.
J Clin Endocrinol Metab.
1997;
82
1390-1396
15
L'Allemand D, Penhoat A, Lebrethon M C et al..
Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells.
J Clin Endocrinol Metab.
1996;
81
3892-3897
16
Latinkic B V, Mo F E, Greenspan J A et al..
Promoter function of the angiogenic inducer Cyr61gene in transgenic mice: tissue specificity, inducibility during wound healing, and role of the serum response element.
Endocrinology.
2001;
142
2549-2557
17
Carr B R, Simpson E R.
Cholesterol synthesis in human fetal tissues.
J Clin Endocrinol Metab.
1982;
55
447-452
18
Waterham H R, Koster J, Romeijn G J et al..
Mutations in the 3β-hydroxysterol delta24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis.
Am J Hum Genet.
2001;
69
685-694
19
Parker Jr C R, Carr B R, Winkel C A et al..
Hypercholesterolemia due to elevated low density lipoprotein-cholesterol in newborns with anencephaly and adrenal atrophy.
J Clin Endocrinol Metab.
1983;
57
37-43
20
Parker Jr C R, MacDonald P C, Carr B R, Morrison J C.
The effects of dexamethasone and anencephaly on newborn serum levels of apolipoprotein A-1.
J Clin Endocrinol Metab.
1987;
65
1098-1101
21
Parker Jr C R.
Dehydroepiandrosterone and dehydroepiandrosterone sulfate production in the human adrenal during development and aging.
Steroids.
1999;
64
640-647
22
Voutilainen R, Ilvesmaki V, Miettinen P J.
Low expression of 3β-hydroxy-5-ene steroid dehydrogenase gene in human fetal adrenals in vivo; adrenocorticotropin and protein kinase C-dependent regulation in adrenocortical cultures.
J Clin Endocrinol Metab.
1991;
72
761-767
23
Ebert S N, Balt S L, Hunter J P et al..
Egr-1 activation of rat adrenal phenylethanolamine N-methyltransferase gene.
J Biol Chem.
1994;
269
20885-20898
24
Wilson T E, Mouw A R, Weaver C A, Milbrandt J, Parker K L.
The orphan nuclear receptor NGFI-B regulates expression of the gene encoding steroid 21-hydroxylase.
Mol Cell Biol.
1993;
13
861-868
25
Davis I J, Lau L F.
Endocrine and neurogenic regulation of the orphan nuclear receptors Nur77 and Nurr-1 in the adrenal glands.
Mol Cell Biol.
1994;
14
3469-3483
26
Bassett M H, Suzuki T, Sasano H et al..
The orphan nuclear receptor NGFIB regulates transcription of 3β-hydroxysteroid dehydrogenase: implications for the control of adrenal functional zonation.
J Biol Chem.
2004;
279
37622-37630
27
Parker Jr C R, Stankovic A M, Goland R S.
Corticotropin-releasing hormone stimulates steroidogenesis in cultured human adrenal cells.
Mol Cell Endocrinol.
1999;
155
19-25
28
Hillhouse E W, Grammatopoulos D K.
Role of stress peptides during human pregnancy and labour.
Reproduction.
2002;
124
323-329
29
McGrath S, Smith R.
Corticotrophin-releasing hormone and parturition.
Clin Endocrinol (Oxf).
2001;
55
593-595
30
Rehman K S, Sirianni R, Carr B, Rainey W E, Parker C R.
Endocrine controls of human parturition: corticotropin-releasing hormone (CRH) directly stimulates cortisol and the cortisol biosynthetic pathway in the human fetal adrenal.
J Soc Gynecol Investig.
2004;
11
80A
31
McLean M, Bisits A, Davies J et al..
Predicting risk of preterm delivery by second-trimester measurement of maternal plasma corticotropin-releasing hormone and alpha-fetoprotein concentrations.
Am J Obstet Gynecol.
1999;
181
207-215
32
Campbell E A, Linton E A, Wolfe C D et al..
Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition.
J Clin Endocrinol Metab.
1987;
64
1054-1059
33
Petraglia F, Sawchenko P, Rivier J, Vale W.
Evidence for local stimulation of ACTH by corticotropin-releasing hormone in human placenta.
Nature.
1987;
328
717-719
34
Robinson B G, Emanuel R L, Frim D M, Majzoub J A.
Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta.
Proc Natl Acad Sci USA.
1988;
85
5244-5248
35
Jones S A, Brooks A N, Challis J R.
Steroids modulate corticotropin-releasing hormone production in human fetal membranes and placenta.
J Clin Endocrinol Metab.
1989;
68
825-830
36
Karalis K, Majzoub J A.
Regulation of placental corticotropin-releasing hormone by steroids. Possible implications in labor initiation.
Ann N Y Acad Sci.
1995;
771
551-555
37
Goland R S, Wardlaw S L, Stark R I, Brown Jr L S, Frantz A G.
High levels of corticotropin-releasing hormone immunoactivity in maternal and fetal plasma during pregnancy.
J Clin Endocrinol Metab.
1986;
63
1199-1203
38
Stalla G K, Bost H, Stalla J et al..
Human corticotropin-releasing hormone during pregnancy.
Gynecol Endocrinol.
1989;
3
1-10
39
Lockwood C J, Radunovic N, Nastic D et al..
Corticotropin-releasing hormone and related pituitary-adrenal axis hormones in fetal and maternal blood during the second half of pregnancy.
J Perinat Med.
1996;
24
243-251
40
Perkins A V, Wolfe C D, Eben F, Soothill P, Linton E A.
Corticotrophin-releasing hormone-binding protein in human fetal plasma.
J Endocrinol.
1995;
146
395-401
41
Florio P, Woods R J, Genazzani A R, Lowry P J, Petraglia F.
Changes in amniotic fluid immunoreactive corticotropin-releasing factor (CRF) and CRF-binding protein levels in pregnant women at term and during labor.
J Clin Endocrinol Metab.
1997;
82
835-838
42
Goland R S, Jozak S, Warren W B et al..
Elevated levels of umbilical cord plasma corticotropin-releasing hormone in growth-retarded fetuses.
J Clin Endocrinol Metab.
1993;
77
1174-1179
43
Goland R S, Tropper P J, Warren W B et al..
Concentrations of corticotrophin-releasing hormone in the umbilical-cord blood of pregnancies complicated by pre-eclampsia.
Reprod Fertil Dev.
1995;
7
1227-1230
44
Petraglia F, Aguzzoli L, Florio P et al..
Maternal plasma and placental immunoreactive corticotrophin-releasing factor concentrations in infection-associated term and pre-term delivery.
Placenta.
1995;
16
157-164
45
Ruth V, Hallman M, Laatikainen T.
Corticotropin-releasing hormone and cortisol in cord plasma in relation to gestational age, labor, and fetal distress.
Am J Perinatol.
1993;
10
115-118
46
Petraglia F, Florio P, Benedetto C et al..
High levels of corticotropin-releasing factor (CRF) are inversely correlated with low levels of maternal CRF-binding protein in pregnant women with pregnancy-induced hypertension.
J Clin Endocrinol Metab.
1996;
81
852-856
47
Hobel C J, Arora C P, Korst L M.
Corticotrophin-releasing hormone and CRH-binding protein. Differences between patients at risk for preterm birth and hypertension.
Ann N Y Acad Sci.
1999;
897
54-65
48
Murphy B E.
Human fetal serum cortisol levels related to gestational age: evidence of a midgestational fall and a steep late gestational rise, independent of sex or mode of delivery.
Am J Obstet Gynecol.
1982;
144
276-282
49
Goland R S, Jozak S, Conwell I.
Placental corticotropin-releasing hormone and the hypercortisolism of pregnancy.
Am J Obstet Gynecol.
1994;
171
1287-1291
50
Falkenberg E R, Davis R O, DuBard M, Parker Jr C R.
Effects of maternal infections on fetal adrenal steroid production.
Endocr Res.
1999;
25
239-249
51
Bolte E, Wiqvist N, Diczfalusy E.
Metabolism of dehydroepiandrosterone and dehydroepiandrosterone sulphate by the human foetus at midpregnancy.
Acta Endocrinol.
1966;
52
583-597
52
Kirschner M A, Wiqvist N, Diczfalusy E.
Studies on oestriol synthesis from dehydroepiandrosterone sulphate in human pregnancy.
Acta Endocrinol.
1966;
53
584-597
53
Siiteri P K, MacDonald P C.
Placental estrogen biosynthesis during human pregnancy.
J Clin Endocrinol Metab.
1966;
26
751-761
54
Ryan K J.
Metabolism of C-16-oxygenated steroids by human placenta: the formation of estriol.
J Biol Chem.
1959;
234
2006
55
MacDonald P C, Siiteri P K.
Origin of estrogen in women pregnant with an anencephalic fetus.
J Clin Invest.
1965;
44
465
56
Cantineau R, Kremers P, De Graeve J, Gielen J E, Lambotle R.
15- and 16-hydroxylations of androgens and estrogens in the human fetal liver: a critical step in estetrol biosynthesis.
J Steroid Biochem.
1985;
22
195-201
William E RaineyPh.D.
Department of OB/GYN, UT Southwestern Medical Center
5323 Harry Hines Blvd., Dallas
TX 75390-9032
eMail: william.rainey@utsouthwestern.edu