Pneumologie 2005; 59(7): 461-469
DOI: 10.1055/s-2004-870942
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Pharmakatransport im Atemwegsepithel

Drug Transport in the Respiratory EpitheliumH.  B.  Paul1, 2 , T.  Welte2 , D.  A.  Groneberg1, 2
  • 1Abteilung für Pneumologie, Medizinische Hochschule Hannover, (Leiter: Prof. Dr. T. Welte)
  • 2Klinische Forschergruppe Allergologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, (Leiter: Prof. Dr. A. Fischer)
Further Information

Publication History

Eingang: 25. Februar 2005

Nach Revision akzeptiert: 23. Juni 2005

Publication Date:
27 July 2005 (online)

Zusammenfassung

Die aerosolische Administration von Peptidomimetika könnte in der Zukunft bei der Behandlung einer Vielzahl pulmonaler und systemischer Erkrankungen eine wichtige Rolle spielen. Insbesondere ergeben sich durch die neuen Verfahren der rationalen Substanzentwicklung Möglichkeiten, spezifische Pharmaka zu entwerfen, die durch Transportproteine effizient durch das Epithel transportiert werden. Von den zwei derzeitig bekannten Pharmakatransportern PEPT1 und PEPT2, die aus menschlichem Gewebe kloniert worden sind, konnte der hochaffine PEPT2-Transporter in der Lunge nachgewiesen werden. Es handelt sich um ein Membranprotein mit 12 transmembranären Domänen, welches durch Kopplung an einen zelleinwärts gerichteten elektrochemischen Protonengradienten Substrate transportiert. In den menschlichen Atemwegen konnte die Expression von PEPT2 im Bronchialepithel und in Pneumozyten Typ 2 gefunden werden. Aufnahmestudien zeigen, dass sowohl Peptide sowie auch Peptidomimetika wie Antibiotika, antivirale Substanzen und Zytostatika durch PEPT2 transportiert werden. PEPT2 ist ebenso verantwortlich für den Transport der Delta-Aminolävulinsäure, die in der photodynamischen Therapie und Diagnostik von pulmonalen Neoplasien verwendet wird. Ausgehend von neuesten Erkenntnissen im Bereich Substratbindung- und -Transport rückt PEPT2 als Transportsystem zukünftiger, mittels rationaler Substanzentwicklung generierter Atemwegstherapeutika und Prodrugs in das Blickfeld therapeutischer Überlegungen.

Abstract

The aerosolic administration of peptidomimetic drugs with a peptide backbone may play a crucial role in the future treatment of diseases. Especially rational drug design offers an option to synthesize new drugs that are carried by specific drug transporters. Out of the presently identified transporter proteins PEPT1 and PEPT2, the high-affinity transporter PEPT2 is found in the respiratory tract. The transporter possess 12 membrane spanning domains and catalyses an electrogenic uphill drug transport using a transmembrane electrochemical proton gradient. PEPT2 is expressed in the bronchial epithelium and in alveolar type II pneumocytes in human airways. Kinetic studies demonstrated that peptidomimetic compounds including antibiotic, antiviral and antineoplastic drugs are carried by PEPT2. The transporter also carries delta-aminolevulinic acid into the airways. This molecule can be used for the diagnostics of pulmonary neoplasms and for photodynamic therapy. Using the recently published data on minimal structural requirements for PEPT2-substrates, rational drug design may lead to a new generation of respiratory drugs and prodrugs, which are delivered to the airways via the molecular mechanisms of the PEPT2 transport system.

Literatur

  • 1 Groneberg D A. Expression, Lokalisation und funktionelle Aspekte des Peptidtransporters PEPT2 im gesunden Atemtrakt und bei Mukoviszidose.  Pneumologie. 2003;  57 104-105
  • 2 Groneberg D A. Chronischer Husten: Assoziationen zwischen Klinik und nervalen Einflüssen.  Pneumologie. 2003;  57 473-474
  • 3 Groneberg D A, Witt C, Wagner U. et al . Fundamentals of pulmonary drug delivery.  Respir Med. 2003;  97 382-387
  • 4 Cushing I E, Miller W F. Nebulization therapy.  Clin Anesth. 1965;  1 169-218
  • 5 Bates D V, Kaneko K, Henderson J A. et al . Recent experimental and clinical experience in studies of regional lung function.  Scand J Respir Dis Suppl. 1966;  62 15-29
  • 6 Bertalanffy F D. Respiratory tissue: structure, histophysiology, cytodynamics. I. Review and basic cytomorphology.  Int Rev Cytol. 1964;  16 233-328
  • 7 Wagner Jr H N, Tow D E, Lopez-Majano V. et al . Factors influencing regional pulmonary blood in man.  Scand J Respir Dis Suppl. 1966;  62 59-72
  • 8 Miller W F. Aerosol therapy in acute and chronic respiratory disease.  Arch Intern Med. 1973;  131 148-155
  • 9 Corkery K. Inhalable drugs for systemic therapy.  Respir Care. 2000;  45 831-835
  • 10 Newhouse M T, Corkery K J. Aerosols for systemic delivery of macromolecules.  Respir Care Clin N Am. 2001;  7 261-275
  • 11 Harsch I A, Hahn E G, Konturek P C. Syringe, pen, inhaler - the evolution of insulin therapy.  Med Sci Monit. 2001;  7 833-836
  • 12 Cole C H. Inhaled glucocorticoid therapy in infants at risk for neonatal chronic lung disease.  J Asthma. 2000;  37 533-543
  • 13 O'Riordan T G. Optimizing delivery of inhaled corticosteroids: matching drugs with devices.  J Aerosol Med. 2002;  15 245-250
  • 14 Kelly H W. Comparative potency and clinical efficacy of inhaled corticosteroids.  Respir Care Clin N Am. 1999;  5 537-553
  • 15 Fink J, Dhand R. Bronchodilator resuscitation in the emergency department. Part 2 of 2: dosing strategies.  Respir Care. 2000;  45 497-512
  • 16 Rau Jr J L. Recent developments in respiratory care pharmacology.  J Perianesth Nurs. 1998;  13 359-369
  • 17 Rodrigo G J, Rodrigo C. Aerosol and inhaled therapy in treatment of acute adult airway obstruction in the emergency department.  Respir Care Clin N Am. 2001;  7 215-231
  • 18 O'Riordan T, Faris M. Inhaled antimicrobial therapy.  Respir Care Clin N Am. 1999;  5 617-631
  • 19 Smaldone G C, Palmer L B. Aerosolized antibiotics: current and future.  Respir Care. 2000;  45 667-675
  • 20 Boll M, Herget M, Wagener M. et al . Daniel. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter.  Proc Natl Acad Sci USA. 1996;  93 284-289
  • 21 Groneberg D A, Nickolaus M, Springer J. et al . Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake.  Am J Pathol. 2001;  158 707-714
  • 22 Groneberg D A, Eynott P R, Doring F. et al . Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung.  Thorax. 2002;  57 55-60
  • 23 Boll M, Markovich D, Weber M W. et al . Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, β-lactam antibiotics and ACE-inhibitors.  Pflugers Arch. 1994;  429 146-149
  • 24 Fei Y J, Kanai Y, Nussberger S. et al . Expression cloning of a mammalian proton-coupled oligopeptide transporter.  Nature. 1994;  368 563-566
  • 25 Yamashita F, Kim K J, Lee V H. Gly-L-Phe transport and metabolism across primary cultured rabbit tracheal epithelial cell monolayers.  Pharm Res. 1997;  14 238-240
  • 26 Yamashita V, Kim K J, Lee V H. Dipeptide uptake and transport characteristics in rabbit tracheal epithelial cell layers cultured at an air interface.  Pharm Res. 1998;  15 979-983
  • 27 Groneberg D A, Nickolaus M, Springer J. et al . Pulmonary uptake of oligopeptides: Expression and functional aspects of PEPT2 in airway tissue.  Am J Respir Crit Care Med. 1999;  159 A38
  • 28 Doring F, Michel T, Rosel A. et al . Expression of the mammalian renal peptide transporter PEPT2 in the yeast Pichia pastoris and applications of the yeast system for functional analysis.  Mol Membr Biol. 1998;  15 79-88
  • 29 Ogihara H, Saito H, Shin B C. et al . Immuno-localization of H+/peptide cotransporter in rat digestive tract.  Biochem Biophys Res Commun. 1996;  220 848-852
  • 30 Groneberg D A, Doring F, Daniel H. et al . Distribution of the oligopeptide transporter PEPT2 in normal human lung.  Am J Respir Crit Care Med. 2000;  161 A150
  • 31 Groneberg D A, Dinh Q T, Eynott F. et al . Peptide transport mechanisms in cystic fibrosis and normal human lung.  Allergy. 2001;  56 A19
  • 32 Groneberg D A, Eynott P R, Oates T. et al . Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung.  Respir Med. 2002;  96 81-86
  • 33 Groneberg D A, Eynott P R, Lim S. et al . Expression of respiratory mucins in fatal status asthmaticus and mild asthma.  Histopathology. 2002;  40 367-373
  • 34 Chung K F, Caramori G, Groneberg D A. Airway obstruction in chronic obstructive pulmonary disease.  N Engl J Med. 2004;  351 1459-1461
  • 35 Groneberg D A, Wagner U, Chung K F. Mucus and fatal asthma.  Am J Med. 2003;  116 66-67
  • 36 Groneberg D A, Peiser D, Dinh Q T. et al . Distribution of respiratory mucin proteins in human nasal mucosa.  Laryngoscope. 2003;  113 520-524
  • 37 Paulsen I T, Skurray R A. The POT family of transport proteins.  Trends Biochem Sci. 1994;  19 404
  • 38 Daniel H, Rubio-Aliaga I. An update on renal peptide transporters.  Am J Physiol Renal Physiol. 2003;  284 F885-892
  • 39 Thwaites D T, Kennedy D J, Raldua D. et al . H/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na/H exchanger.  Gastroenterology. 2002;  122 1322-1333
  • 40 Dudeja P K, Hafez N, Tyagi S. et al . Expression of the Na+/H+ and Cl-/HCO-3 exchanger isoforms in proximal and distal human airways.  Am J Physiol. 1999;  276 L971-978
  • 41 Al-Bazzaz F J, Hafez N, Tyagi S. et al . Detection of Cl-HCO3- and Na+-H+ exchangers in human airways epithelium.  Jop. 2001;  2 285-290
  • 42 Irie M, Terada T, Sawada K. et al . Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in Caco-2 cells.  J Pharmacol Exp Ther. 2001;  298 711-717
  • 43 Terada T, Sawada K, Saito H. et al . Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2.  Am J Physiol. 1999;  276 G1435-1441
  • 44 Terada T, Sawada K, Ito T. et al . Functional expression of novel peptide transporter in renal basolateral membranes.  Am J Physiol Renal Physiol. 2000;  279 F851-857
  • 45 Groneberg D A, Doring F, Nickolaus M. et al . Renal assimilation of short chain peptides: visualization of tubular peptide uptake.  Pharm Res. 2002;  19 1209-1214
  • 46 Shen H, Smith D E, Yang T. et al . Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney.  Am J Physiol. 1999;  276 F658-665
  • 47 Groneberg D A, Rubio-Aliaga I, Nickolaus M. et al . Direct visualization of peptide uptake activity in the central nervous system of the rat.  Neurosci Lett. 2004;  364 32-36
  • 48 Berger U V, Hediger M A. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system.  Anat Embryol (Berl). 1999;  199 439-449
  • 49 Groneberg D A, Doring F, Nickolaus M. et al . Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal root ganglia.  Neurosci Lett. 2001;  304 181-184
  • 50 Groneberg D A, Doring F, Theis S. et al . Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA and protein.  Am J Physiol Endocrinol Metab. 2002;  282 E1172-1179
  • 51 Groneberg D A, Doring F, Eynott P R. et al . Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G697-704
  • 52 Smith D E, Pavlova A, Berger U V. et al . Tubular localization and tissue distribution of peptide transporters in rat kidney.  Pharm Res. 1998;  15 1244-1249
  • 53 Knutter I, Rubio-Aliaga I, Boll M. et al . H+/peptide cotransport in the human bile duct epithelium cell line SK-ChA-1.  Am J Physiol Gastrointest Liver Physiol. 2002;  283 G222-229
  • 54 Liu W, Liang R, Ramamoorthy S. et al . Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney.  Biochim Biophys Acta. 1995;  1235 461-466
  • 55 Ramamoorthy S, Liu W, Ma Y Y. et al . Proton/peptide cotransporter (PEPT 2) from human kidney: functional characterization and chromosomal localization.  Biochim Biophys Acta. 1995;  1240 1-4
  • 56 Saito H, Terada T, Okuda M. et al . Molecular cloning and tissue distribution of rat peptide transporter PEPT2.  Biochim Biophys Acta. 1996;  1280 173-177
  • 57 Rubio-Aliaga I, Boll M, Daniel H. Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2.  Biochem Biophys Res Commun. 2000;  276 734-741
  • 58 Shen H, Smith D E, Keep R F. et al . Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus.  J Biol Chem. 2003;  278 4786-4791
  • 59 Rubio-Aliaga I, Frey I, Boll M. et al . Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney.  Mol Cell Biol. 2003;  23 3247-3252
  • 60 Brandsch M, Brandsch C, Ganapathy M E. et al . Influence of proton and essential histidyl residues on the transport kinetics of the H+/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2).  Biochim Biophys Acta. 1997;  1324 251-262
  • 61 Fei Y J, Liu W, Prasad P D. et al . Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.  Biochemistry. 1997;  36 452-460
  • 62 Terada T, Saito H, Mukai M. et al . Identification of the histidine residues involved in substrate recognition by a rat H+/peptide cotransporter, PEPT1.  FEBS Lett. 1996;  394 196-200
  • 63 Doring F, Dorn D, Bachfischer U. et al . Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms.  J Physiol. 1996;  497 (Pt 3) 773-779
  • 64 Fei Y J, Liu J C, Fujita T. et al . Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras.  Biochem Biophys Res Commun. 1998;  246 39-44
  • 65 Terada T, Saito H, Sawada K. et al . Inui. N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition.  Pharm Res. 2000;  17 15-20
  • 66 Doring F, Martini C, Walter J. et al . Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function.  J Membr Biol. 2002;  186 55-62
  • 67 Theis S, Hartrodt B, Kottra G. et al . Defining minimal structural features in substrates of the H(+)/peptide cotransporter PEPT2 using novel amino acid and dipeptide derivatives.  Mol Pharmacol. 2002;  61 214-221
  • 68 Daniel H. Nutrient transporter function studied in heterologous expression systems.  Ann N Y Acad Sci. 2000;  915 184-192
  • 69 Koch C, Hoiby N. Pathogenesis of cystic fibrosis.  Lancet. 1993;  341 1065-1069
  • 70 Rosenstein B J, Zeitlin P L. Prognosis in cystic fibrosis.  Curr Opin Pulm Med. 1995;  1 444-449
  • 71 Ramsey B W. Management of pulmonary disease in patients with cystic fibrosis.  N Engl J Med. 1996;  335 179-188
  • 72 Honeybourne D. Antibiotic penetration into lung tissues.  Thorax. 1994;  49 104-106
  • 73 Baldwin D R, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance.  Antimicrob Agents Chemother. 1992;  36 1176-1180
  • 74 Baldwin D R, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: methodological considerations.  Antimicrob Agents Chemother. 1992;  36 1171-1175
  • 75 Wise R, Andrews J, Imbimbo B P. et al . The penetration of rufloxacin into sites of potential infection in the respiratory tract.  J Antimicrob Chemother. 1993;  32 861-866
  • 76 Honeybourne D, Baldwin D R. The site concentrations of antimicrobial agents in the lung.  J Antimicrob Chemother. 1992;  30 249-260
  • 77 Honeybourne D, Andrews J M, Cunningham B. et al . The concentrations of clinafloxacin in alveolar macrophages, epithelial lining fluid, bronchial mucosa and serum after administration of single 200 mg oral doses to patients undergoing fibre-optic bronchoscopy.  J Antimicrob Chemother. 1999;  43 153-155
  • 78 Soman A, Honeybourne D, Andrews J. et al . Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400 mg oral dose in patients undergoing fibre-optic bronchoscopy.  J Antimicrob Chemother. 1999;  44 835-838
  • 79 Andrews J M, Honeybourne D, Brenwald N P. et al . Concentrations of trovafloxacin in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum after administration of single or multiple oral doses to patients undergoing fibre-optic bronchoscopy.  J Antimicrob Chemother. 1997;  39 797-802
  • 80 Cook P J, Andrews J M, Wise R. et al . Distribution of cefdinir, a third generation cephalosporin antibiotic, in serum and pulmonary compartments.  J Antimicrob Chemother. 1996;  37 331-339
  • 81 Cook P J, Andrews J M, Woodcock J. et al . Concentration of amoxycillin and clavulanate in lung compartments in adults without pulmonary infection.  Thorax. 1994;  49 1134-1138
  • 82 Hodson M E, Penketh A R, Batten J C. Aerosol carbenicillin and gentamicin treatment of Pseudomonas aeruginosa infection in patients with cystic fibrosis.  Lancet. 1981;  2 1137-1139
  • 83 Bressolle F, de la Coussaye J E, Ayoub R. et al . Endotracheal and aerosol administrations of ceftazidime in patients with nosocomial pneumonia: pharmacokinetics and absolute bioavailability.  Antimicrob Agents Chemother. 1992;  36 1404-1411
  • 84 Nolan G, Moivor P, Levison H. et al . Antibiotic prophylaxis in cystic fibrosis: inhaled cephaloridine as an adjunct to oral cloxacillin.  J Pediatr. 1982;  101 626-630
  • 85 Rubio-Aliaga I, Daniel H. Mammalian peptide transporters as targets for drug delivery.  Trends Pharmacol Sci. 2002;  23 434-440
  • 86 Ganapathy M E, Prasad P D, Mackenzie B. et al . Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT1 and PEPT2.  Biochim Biophys Acta. 1997;  1324 296-308
  • 87 Terada T, Saito H, Mukai M. et al . Recognition of beta-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells.  Am J Physiol. 1997;  273 F706-711
  • 88 Gonzalez D E, Covitz K M, Sadee W. et al . An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2.  Cancer Res. 1998;  58 519-525
  • 89 Nakanishi T, Tamai I, Sai Y. et al . Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080.  Cancer Res. 1997;  57 4118-4122
  • 90 Nakanishi T, Tamai I, Takaki A. et al . Cancer cell-targeted drug delivery utilizing oligopeptide transport activity.  Int J Cancer. 2000;  88 274-280
  • 91 Nielsen C U, Brodin B. Di/tri-peptide transporters as drug delivery targets: regulation of transport under physiological and patho-physiological conditions.  Curr Drug Targets. 2003;  4 373-388
  • 92 Rowe P M. Photodynamic therapy begins to shine.  Lancet. 1998;  351 1496
  • 93 Dougherty T J, Gomer C J, Henderson B W. et al . Photodynamic therapy.  J Natl Cancer Inst. 1998;  90 889-905
  • 94 Peng Q, Warloe T, Berg K. et al . 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges.  Cancer. 1997;  79 2282-2308
  • 95 Peng Q, Moan J, Ma L W. et al . Uptake, localization, and photodynamic effect of meso-tetra(hydroxyphenyl)porphine and its corresponding chlorin in normal and tumor tissues of mice bearing mammary carcinoma.  Cancer Res. 1995;  55 2620-2626
  • 96 Maier A, Tomaselli F, Matzi V. et al . Comparison of 5-aminolaevulinic acid and porphyrin photosensitization for photodynamic therapy of malignant bronchial stenosis: a clinical pilot study.  Lasers Surg Med. 2002;  30 12-17
  • 97 Ost D. Photodynamic therapy in lung cancer. A review.  Methods Mol Med. 2003;  75 507-526
  • 98 Unger M. Endobronchial therapy of neoplasms.  Chest Surg Clin N Am. 2003;  13 129-147
  • 99 Chien J W, Johnson J L. Viral pneumonias. Infection in the immunocompromised host.  Postgrad Med. 2000;  107 67-70, 73 - 74, 77 - 80
  • 100 Groneberg D A, Hilgenfeld R, Zabel P. Molecular mechanisms of severe acute respiratory syndrome (SARS).  Respir Res. 2005;  6 8
  • 101 Morin M J, Warner A, Fields B N. Reovirus infection in rat lungs as a model to study the pathogenesis of viral pneumonia.  J Virol. 1996;  70 541-548
  • 102 Becker S, Soukup J, Yankaskas J R. Respiratory syncytial virus infection of human primary nasal and bronchial epithelial cell cultures and bronchoalveolar macrophages.  Am J Respir Cell Mol Biol. 1992;  6 369-374
  • 103 Groneberg D A, Zhang L, Welte T. et al . Severe acute respiratory syndrome: global initiatives for disease diagnosis.  QJM. 2003;  96 845-852
  • 104 Groneberg D A, Poutanen S, Low D E. et al . Treatment and vaccines for severe acute respiratory syndrome (SARS).  Lancet Infect Dis. 2005;  in Press
  • 105 Ganapathy M E, Huang W, Wang H. et al . Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2.  Biochem Biophys Res Commun. 1998;  246 470-475
  • 106 Sugawara M, Huang W, Fei Y J. et al . Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2.  J Pharm Sci. 2000;  89 781-789
  • 107 Han H, de Vrueh R L, Rhie J K. et al . 5’-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter.  Pharm Res. 1998;  15 1154-1159
  • 108 Groneberg D A, Welker P, Fischer T C. et al . Down-regulation of vasoactive intestinal polypeptide receptor expression in atopic dermatitis.  J Allergy Clin Immunol. 2003;  111 1099-1105
  • 109 Jacob P, Rossmann H, Lamprecht G. et al . Down-regulated in adenoma mediates apical Cl-/HCO3- exchange in rabbit, rat, and human duodenum.  Gastroenterology. 2002;  122 709-724
  • 110 Groneberg D A, Hartmann P, Dinh Q T. et al . Expression and distribution of vasoactive intestinal polypeptide receptor VPAC(2) mRNA in human airways.  Lab Invest. 2001;  81 749-755
  • 111 Peiser C, Springer J, Groneberg D A. et al . Leptin receptor expression in nodose ganglion cells projecting to the rat gastric fundus.  Neurosci Lett. 2002;  320 41-44
  • 112 Heppt W, Peiser C, Cryer A. et al . Innervation of human nasal mucosa in environmentally triggered hyperreflectoric rhinitis.  J Occup Environ Med. 2002;  44 924-929
  • 113 Groneberg D A, Heppt W, Cryer A. et al . Toxic rhinitis-induced changes of human nasal mucosa innervation.  Toxicol Pathol. 2003;  31 326-331
  • 114 Eynott P R, Paavolainen N, Groneberg D A. et al . Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation.  J Pharmacol Exp Ther. 2003;  304 22-29
  • 115 Groneberg D A, Niimi A, Dinh Q T. et al . Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough.  Am J Respir Crit Care Med. 2004;  170 1276-1280
  • 116 Springer J, Amadesi S, Trevisani M. et al . Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery.  Regul Pept. 2004;  118 127-134

Priv.-Doz. Dr. med. David A. Groneberg

Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin · Freie Universität Berlin und Humboldt-Universität zu Berlin

Augustenburger Platz 1-OR-1

13353 Berlin, Germany

Email: david.groneberg@charite.de

    >