Der Nuklearmediziner 2005; 28(1): 37-46
DOI: 10.1055/s-2005-836346
Labor, Radiochemie und (Radio-)Immunologie

© Georg Thieme Verlag Stuttgart · New York

Radiomarkierte Peptide zur bildgebenden Diagnostik und Radiotherapie von Tumoren

Radiolabeled Peptides for Diagnostic Imaging and Radiotherapy of TumorsM. Friebe1 , J. E. Bugaj1 , A. Srinivasan1 , L. M. Dinkelborg1
  • 1Research Laboratories of Schering AG, Berlin
Further Information

Publication History

Publication Date:
17 March 2005 (online)

Zusammenfassung

Radioaktiv markierte Peptide leisten einen wertvollen Beitrag auf dem Weg zur individualisierten, auf den Patienten zugeschnittenen Behandlung maligner Erkrankungen. Wegen ihrer exzellenten Zielerkennung sowie der einfach durchzuführenden Radiomarkierung dieser synthetischen Moleküle sind Radiopeptide für die Patientenselektion (Diagnose) und die interne Bestrahlung (Therapie) besonders geeignet. Sowohl radiohalogen- als auch radiometallmarkierte Peptide wurden erfolgreich zur Diagnose und Therapie einer Vielzahl von Tumoren eingesetzt. Das Potenzial von Radiopeptiden konnte besonders mit 90Y-DOTATOC und 177Lu-DOTATATE bei der Behandlung von konventionell austherapierten Patienten mit somatostatinrezeptorpositiven, neuroendokrinen Tumoren gezeigt werden. 99mTc-NeoTect®, ein weiteres SSTR-bindendes Peptid-Radiometall-Konjugat, ist in der Lage, Lungenläsionen mittels SPECT mit 97 % Sensitivität und > 70 % Spezifität zu detektieren. In verschiedenen präklinischen Lungentumormodellen konnte auch mit 188Re-NeoTide®, dem therapeutischen Pendant zu 99mTc NeoTect®, eine signifikante Tumorregression in Lungentumormodellen erreicht werden. Die zielgerichtete Detektion der Neoangiogenese mittels αvβ3-Rezeptorbindung macht Radiopeptide zu wirkungsvollen Werkzeugen für die diagnostische Bildgebung, da dieser Rezeptor bei der Blutgefäßneubildung vielfältiger Tumorentitäten verstärkt gefunden wird. Die Verwendung von (18F)-Galakto-RGD, einem hochaffinen Binder für αvβ3-Rezeptoren, unterstreicht das Potenzial von Radiopeptiden zur Tumordetektion und zum Staging. Der erfolgreiche Einsatz von 99mTc-Demogastrin® bei der Detektion des medullären Schilddrüsenkarzinoms und multipler Metastasen öffnet ein weiteres Feld zur Diagnose und Therapie von soliden Tumoren.

Abstract

Radioactively labeled peptides are powerful tools for an individualized, patient based treatment of oncological diseases. The excellent targeting concomittant with the easy radiolabeling enable such fully synthetic molecules for patient selection (diagnosis) and internal irradiation (therapy). Peptides labeled with radiohalogenes as well as radiometals were used successfully for the diagnosis and therapy of numerous malignancies. The use of 90Y-DOTATOC and 177Lu-DOTATATE for the treatment of patients with neuroendocrine tumors, refrectory to chemotherapy, underline the potential of radiopeptides. 99mTc-NeoTect®, another somatostatin targeting peptide-radiometal conjugate, detects lung lesions with 97 % sensitivity and > 70 % specificity employing SPECT. Pre-clinical results of 188Re-NeoTide®, the radiotherapeutic counterpart of 99mTc-NeoTect®, indicate significant tumor regression in lung tumor models. The αvβ3-targeted detection of neoangiogenesis proves radiopeptides to be valuable tools for the diagnostic imaging of multiple tumor entities, since αvβ3-receptors are overexpressed in a variety of tumors undergoing new blood-vessel formation. The application of (18F)-Galacto-RGD, a high-affinity binder for αvβ3-receptors, pinpoints the potential of peptides for tumor detection (Fig. [5]) and staging. The successful use of 99mTc-Demogastrin® for detection of medullary thyroid carcinoma and its multiple metastases opens a new field in diagnosis and therapy of solid tumors.

Literatur

  • 1 Goldenberg D M, DeLand F, Kim E, Bennett S, Primus F J, Nagell J R van. et al . Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning.  N Engl J Med. 1978;  298 1384-1386
  • 2 Goldenberg D M, Goldenberg H, Sharkey R M, Lee R E, Higgenbotham-Ford E, Horowitz J A. et al . Imaging of colorectal carcinoma with radiolabeled antibodies.  Semin Nucl Med. 1989;  19 262-281
  • 3 Larson S M. Biologic characterization of of melanoma tumors by antigen-specific targeting of radiolabeled antitumor antibodies.  J Nucl Med. 1991;  32 287-291
  • 4 Witzig T E, Flinn I W, Gordon L I, Emmanouilides C, Czuczman M S, Saleh M N, Cripe L, Wiseman G, Oljenik T, Multani P S, White C A. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma.  J Clin Oncol. 2002;  20 3262-3269
  • 5 Mach J P, Carrel S, Forni M, Ritchard J, Donath A, Alberto P. Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma: a critical evaluation.  N Engl J Med. 1980;  303 5-10
  • 6 Bakker W H, Albert R, Bruns C, Breeman W, Hofland L, Marbach P, Pless J, Pralet D, Stolz B, Koper J, Lamberts S, Visser T, Krenning E P. [111In-DTPA-D-Phe1]-Octreotide, A potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation.  Life Sciences. 1991;  49 1583-1591
  • 7 Behr T M, Memtsoudis S, Sharkey R M, Blumenthal R D, Dunn R M, Gratz S. et al . Experimental studies on the role of antibody fragments in cancer radioimmunotherapy: Influence of radiationdose and dose rate on toxicity and antitumor efficacy.  Int J Cancer. 1998;  77 787-795
  • 8 Buraggi G L, Callegaro L, Mariani G, Turrin A, Cascinelli N, Attilli A, Bombardieri E. et al . Imaging with 131I-labeled monoclonal antibodies to a high molecular-weight melanoma associated antigen in patients with melanoma: Efficacy of whole immunoglobulin and its F(ab)2 fragments.  Cancer Res. 1985;  45 3378-3385
  • 9 Reubi J C, Landolt A M. High density of somatostatin receptors in pituitary tumors from acromegalic patients.  J Clin Endocrinol Metab. 1984;  59 1148-1151
  • 10 Reubi J C. Neuropeptide receptors in health and disease: The molecular basis for in vivo imaging.  J Nucl Med. 1995;  36 1825-1835
  • 11 Reubi J C. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy.  Q J Nucl Med. 1997;  41 63-70
  • 12 Schlyer D J. Production of radionuclides in accelarators. In: Welch MJ, Redvanly CS (editors). Handbook of Pharmaceuticals. Wiley 2003; 1-70
  • 13 Mausner L F, Mirzadeh S. Reactor production of radionuclides. In: Welch MJ, Redvanly CS (editors). Handbook of Pharmaceuticals. Wiley 2003; 87-118
  • 14 Hoefnagel C A. Radionuclide cancer therapy.  Ann Nucl Med. 1998;  12 61-70
  • 15 Park C H. The role of radioisotopes in radiation oncology.  Sem In Oncol. 1997;  24 639-654
  • 16 Reubi J C, Schaer J C, Waser B. Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors.  Cancer Res. 1997;  57 1377-1386
  • 17 Cuttitta F, Carney D N, Mulshine J, Moody T W, Fedorko J, Fischler A, Minna J D. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer.  Nature. 1985;  316 823-826
  • 18 Bunnett G. Gastrin Releasing Peptide. In: Walsh JH, Dockray GJ (eds). Gut Peptides: biochemistry and physiology. Raven Press, New York 1994; 423-445
  • 19 Walsh J H. Gastriintestinal hormones. In: Johnson LR (ed). Physiology of gastrointestinal tract. 3rd ed. Raven Press, New York 1994; 1-128
  • 20 Cao Y J, Kojro E, Jasinowski M, Lankiewicz L, Grzonka Z, Fahrenholz F. Identification of binding domains of pituitary adenylate cyclase activating polypeptide (PACAP) for its type 1 receptor by photoaffinity labeling.  Ann NY Acad Sci. 1998;  865 82-91
  • 21 Hua C, Shu X K, Lei C. Pancreatoblastoma: A histochemical and immunohistochemical analysis.  J Clin Pathol. 1996;  49 952-954
  • 22 Henning I M, Laissue J A, Horisberger U, Reubi J C. Substance-P receptors in human primary neoplasms: Tumoral and vascular localization.  Int J Cancer. 1995;  61 786-792
  • 23 Cox D, Aoki T, Seki J, Motoyama Y, Yoshida K. The pharmacology of the integrins.  Medicinal Research Reviews. 1994;  14 195-228
  • 24 Patel Y C. Somatostatin and its receptor family.  Frontiers in Neuroendocrinology. 1999;  20 157-198
  • 25 Patel Y C, Greenwood M T, Panetta R, Demchyshyn L, Niznik H, Srikant C B. Minireview: The somatostatin receptor family.  Life Sciences. 1995;  57 1249-1265
  • 26 Corleto V D, Nasoni S, Panzuto F, Casetta S, Delle Fave G. Somatostatin receptor subtypes: basic pharmacology and tissue distribution.  Digestive and Liver Disease. 2004;  36 (Suppl 1) S 8-S 16
  • 27 Bakker W, Krenning E P, Breeman W A, Koper J W, Kooij J C. et al . Receptor scintigraphy with a radioiodinated somatostatin analogue: Radiolabeling, purification, biological activity and in vivo application in animals.  J Nucl Med. 1990;  31 1501-1509
  • 28 Lamberts S W, Bakker W H, Reubi J C, Krenning E P. Somatostatin-receptor imaging in the localization of endocrine tumors.  N Engl J Med. 1990;  323 1246-1249
  • 29 Knight L C. Radiolabeled peptides for tumor imaging. In: Welch MJ, Redvanly CS (editors). Handbook of Pharmaceuticals. Wiley 2003; 643-684
  • 30 Bakker W H, Albert R, Bruns C, Breeman W A. et al . [111In-DTPA-D-Phe1] Octreotide, a potential radiopharmaceutical for imaging somatostatin positive tumors: Synthesis, radiolabeling and in vitro validation.  Life Sciences. 1991;  49 1583-1591
  • 31 Krenning E P, Kooij J C, Bakker W H, Breeman W A. et al . Somatostatin scintigraphy with In-111-DTPA-D-Phe1-octreotide in Man: Metabolism, dosimetry and comparison with I-123-Tyr3-Octreotide.  J Nucl Med. 1992;  33 652-658
  • 32 Krenning E P, Kwekkeboom D J, Bakker W H, Breeman W A. et al . Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1] and [123I-Tyr3]-Octreotide: The Rotterdam ecperience with more than 1000 patients.  Eur J Nucl Med. 1993;  20 716-731
  • 33 Forssell-Aronsson E, Bernhardt P, Nilsson O. et al . Biodistribution data from 100 patients i.v. injected with [111In-DTPA-D-PHE1]-Octreotide.  Acta Oncol. 2004;  43 436-442
  • 34 Maina T, Stolz B, Bruns C, Koch P, Mäcke H. Synthesis, radiochemistry and biological evaluation of a new somatostatin analogue (SDZ 219-387) labeled with Tc-99m.  Eur J Nucl Med. 1994;  25 621-631
  • 35 Virgolini I, Leimer M, Handmaker H. et al . Somatostatin receptor subtype specificity and in vivo binding of a novel tumor tracer, 99mTc-P829.  Cancer Res. 1998;  58 1850-1856
  • 36 Blum J, Handmaker H, Rinne N. The utility of a somatostatin-type receptor binding peptide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules.  Chest. 1999;  115 224-232
  • 37 Blum J, Handmaker H, Lister-James J, Rinne N. A multicenter Trial with a somatostatin analog 99mTc-Depreotide in the evaluation of solitary pulmonary nodules.  Chest. 2000;  117 1232-1238
  • 38 Martins T, Lino J, Ramos S, Olivera L. 99mTc-Depreotide Scintigraphy in the evaluation of indeterminate pulmonary lesions: Clinical experience.  Cancer Biotherapy Radiopharma. 2004;  19 253-259
  • 39 Lowe V J, Fletcher J W, Gobar L, Lawson M, Kirchner P, Valk P, Karis J, Hubner K, Delbeke D, Heiberg E V, Patz E F, Coleman R E. Prospective investigation of positron emission tomography in lung nodules.  J Clin Onc. 1998;  16 1075-1084
  • 40 Maina T, Nock B, Nikolopoulou A. et al . [99mTc]-Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumors: Synthesis and pre-clinical results.  Eur J Nucl Med. 2002;  29 742-753
  • 41 Stolz B, Weckbecker G, Smith-Jones P, Albert R. et al . The somatostatin-receptor radiotherapeutic [90Y-DOTA-(D)Phe1]Tyr3-Octreotide (90Y-SMT 487) eradicates experimental rat pancreatic CA20948 tumors.  Eur J Nucl Med. 1998;  25 668-674
  • 42 Bugaj J E, Erion J L, Johnson M A, Schmidt M A. et al . Radiotherapeutic efficacy of 153Sm-CMDTPA-Tyr3-Octreotate in tumor bearing rats.  Nucl Med Biol. 2001;  28 327-334
  • 43 De Jong M, Breeman W A, Bugaj J E, Srinivasan A, Erion J L. et al . [177Lu-DOTA-Tyr3]Octreotate for somatostatin receptor-targeted radionuclide therapy.  Int J Cancer. 2001;  92 628-633
  • 44 Virgolini I, Traub T, Leimer M, Novotny C. et al . New radiopharmaceuticals for receptor scintigraphy and radionuclide therapy.  Q J Nucl Med. 2000;  44 50-58
  • 45 Paganelli G, Zoboli S, Cremonesi M, Mäcke H. et al . Receptor-mediated radionuclide therapy with 90Y-DOTA-D-Phe1-Tyr3-Octreotide: Preliminary report in cancer patients.  Cancer Biotherapy Radiopharm. 1999;  14 477-483
  • 46 Otte A, Hermann R, Heppler A, Behe M. et al . Yttrium-90 DOTATOC: First clinical results.  Eur J Nucl Med. 1999;  26 1439-1447
  • 47 Waldherr C, Pless M, Mäcke H. et al . The clinical value of 90Y-DOTA-D-Phe1-Tyr3-Octreotide (Y-90-DOTATOC) in the treatment of neuroendocrine tumors: A clinical Phase II Study.  Ann Oncology. 2001;  12 941-945
  • 48 Bushnell D, O'Dorisio T, Menda Y, Carlisle T. et al . Evaluating the clinical effectiveness of 90Y-SMT 487 in patients with neuroendocrine tumors.  J Nucl Med. 2003;  44 1556-1560
  • 49 Forrer F, Uusijarvi H, Waldherr C, Cremonesi M. et al . A comparison of 111In-DOTATOC and 111In-DOTATATE: Biodistribution and dosimetry in the same patient with metastatic neuroendocrine tumors.  Eur J Nucl Med. 2004;  online publication
  • 50 Bodei L, Cremonesi M, Grana C, Rocca P. et al . Receptor radionuclide therapy with 90Y-DOTA-D-Phe1-Tyr3-Octreotide (90Y-DOTATOC) in neuroendocrine tumors.  Eur J Nucl Med. 2004;  31 1038-1046
  • 51 Krenning E P, Kwekkeboom D J, Valkema R, Pauwels S, Kvols L, De Jong M. Peptide receptor radionuclide therapy.  Ann NY Acad Sci. 2004;  1014 234-245
  • 52 Kwekkeboom D J, Bakker W H, Srinivasan A, Erion J L, Bugaj J E, Schmidt M A. et al . [177Lu-DOTA0,Tyr3]Octreotate: Comparison with [111In-DTPA0]Octreotide in patients.  Eur J Nucl Med. 2001;  28 1319-1325
  • 53 Kwekkeboom D J, Bakker W H, Kam B L, Teunissen J J. et al . Treatment of patients with gastroentero-pancreatic (GEP) tumors with the novel radiolabelled somatostatin analog [177Lu-DOTA0,Tyr3]Octreotate.  Eur J Nucl Med. 2003;  30 417-422
  • 54 O'Byrne K, Schally A, Thomas A, Carney D, Steward W. Somatostatin, its receptors and analogs, in lung cancer.  Chemotherapy. 2001;  47 78-108
  • 55 Tsutumi A, Takano H, Ichikawa K. et al . Expression of somatostatin receptor subtype 2 mRNA in human lymphoid cells.  Cellular Immunology. 1997;  181 44-49
  • 56 Denzler B, Reubi J C. Expression of somatostatin receptors in peritumoral veins of human tumors.  Cancer. 1999;  85 188-198
  • 57 Pless M, Waldherr C, Mäcke H, Buitrago C. et al . Targeted radiotherapy for small cell lung cancer using 90Yttrium-DOTATOC, an Yttrium-labeled somatostatin analog: a pilot trial.  Lung Cancer. 2004;  45 365-371
  • 58 Bugaj J E, Friebe M, Azure M, Cyr J E. et al .Radiotherapeutic efficacy of Re-188 P2045 in small cell lung carcinoma (SCLC) and non-small cell lung cancer (NSCLC) mouse models by specific sstr-targeting. Technetium, Rhenium and Other Metals in Chemistry and Nuclear Medicine, 6, SGEditorali, Padova 2002; 357-362
  • 59 Ruoslahti E. Integrins.  J Clin Invest. 1991;  87 1-5
  • 60 Hynes R O. Integrins: Versatility, modulation and signalling in cell adhesion.  Cell. 1992;  69 11-25
  • 61 Pierschbacher M D, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule.  Nature. 1984;  309 30-33
  • 62 Brooks P C, Montgomery A M, Rosenfeld M, Reisfeld R A, Hu T, Klier G. et al . Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels.  Cell. 1994;  79 1157-1164
  • 63 Haubner R, Wester H J, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H. et al . Radiolabeled αvβ3 integrin antagonists: a new class of of tracers for tumor targeting.  J Nucl Med. 1999;  40 1061-1071
  • 64 Haubner R, Wester H J, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman S L. et al . Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics.  J Nucl Med. 2001;  42 326-336
  • 65 Haubner R, Wester H J, Weber W A, Mang C, Ziegler S I, Goodman S L. et al . Non-invasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptides and positron emission tomography.  Cancer Res. 2001;  61 1781-1785
  • 66 Haubner R, Wester H J, Weber W A, Schwaiger M. Radiotracer-based strategies to image angiogenesis.  Q J Nucl Med. 2003;  47 189-199
  • 67 Hagen P M Van, Breeman W A, Bernard H F, Schaar M, Mooij C M, Srinivasan A. et al . Evaluation of a radiolabeled cyclic DTPA-RGD analogue for tumor imaging and radionuclide therapy.  Int J Cancer. 2000;  90 186-189
  • 68 Janssen M L, Oyen W J, Djikgraaf I, Massuger L F, Frielink C, Edwards D S. et al . Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model.  Cancer Res. 2002;  62 6146-6151
  • 69 Aumailey M, Gurrath M, Müller G, Calvete J, Timpl R, Kessler H. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1.  FEBBS Lett. 1991;  291 50-54
  • 70 Haubner R, Kühnast B, Wester H J, Weber W A, Huber R, Senekowitsch-Schmidtke R. et al . 18F-RGD-Peptides conjugated with hydrophylic tetrapeptides for the noninvasive determination of the αvβ3 integrin.  J Nucl Med. 2002;  43 (Suppl) 89 P
  • 71 Haubner R, Wester H J, Weber W A, Linke W, Bodenstein C, Kessler H. et al . Improved pharmacokinetics of [F-18]RGD peptides by serine-conjugation.  J Label Radiopharmacol. 2001;  44 (Suppl 1) S 157-S 159
  • 72 Ogawa M, Hatano K, Oishi S, Kawasumi Y, Fuji N, Kawaguchi M. et al . Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo alpha(v)beta(3) integrin related tumor imaging.  Nucl Med Biol. 2003;  30 1-9
  • 73 Bock M, Bruchertseifer F, Haubner R, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M. et al . 99mTc, Re-188 and Y-90 labeled αvβ3 antagonists: promising tracer for tumor induced angiogenesis.  J Nucl Med. 2000;  41 41 P
  • 74 Haubner R, Bruchertseifer F, Bock M, Kessler H, Schwaiger M, Wester H J. Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD-peptide for imaging the alphavbeta3 expression.  Nuklearmedizin. 2004;  43 26-32
  • 75 Sivolapenko G B, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirnalis G. et al . Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide.  Eur J Nucl Med. 1998;  25 1383-1389
  • 76 Liu S, Cheung E, Ziegler M C, Rajopadhye M, Edwards D A. 90Y and 177Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy.  Bioconj Chem. 2001;  12 559-568
  • 77 Liu S, Edwards D S, Ziegler M C, Harris A R, Hemingway S J, Barrett J A. 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors.  Bioconj Chem. 2001;  12 624-629
  • 78 Thurnshim G, Hersel U, Goodman S L, Kessler H. Multimeric cyclic RGD-peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation.  Chem Eur J. 2003;  9 2717-2725
  • 79 Poethko T, Turnshim H, Hersel U, Rau F, Haubner R, Schwaiger M. et al . Improved tumor uptake, tumor retention and tumor/background ratios of pegylated RGD-multimers.  J Nucl Med. 2003;  44 (Suppl) 46 P
  • 80 Gregory H, Hardy P M, Jones D S, Kenner G W, Sheppard R C. The antral hormone gastrin. Structure of gastrin.  Nature. 1964;  204 931-933
  • 81 Yalow R S, Berson S A. Size and charge distinctions between endogenous human plasma gastrin in peripheral blood and heptadecapeptide gastrins.  Gastroenterology. 1970;  58 609-615
  • 82 Thompson J C, Marx M. Gastrointestinal Hormones. In: Ravitch MM (Ed). Current Problems in Surgery. Year Book Medical Publishers, Chicago, Illinois 1984; pp. 1-80
  • 83 Behr T M, Jenner N, Radetzky S, Behe M, Gratz S, Yucekent S, Raue F, Becker W. Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin.  Eur J Nucl Med. 1998;  25 424-430
  • 84 de Jong M, Bakker W H, Bernard B F, Valkema R, Kwekkeboom D J, Reubi J C, Srinivasan A, Schmidt M, Krenning E P. Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor-targeted scintigraphy and radionuclide therapy.  J Nucl Med. 1999;  40 2081-2087
  • 85 Behr T M, Jenner N, Behe M, Angerstein C, Gratz S, Raue F, Becker W. Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors.  J Nucl Med. 1999;  40 1029-1044
  • 86 Reubi J C, Waser B, Schaer J C, Laederach U, Erion J, Srinivasan A, Schmidt M A, Bugaj J E. Unsulfated DTPA- and DOTA-CCK analogs as specific high-affinity ligands for CCK-B receptor-expressing human and rat tissues in vitro and in vivo.  Eur J Nucl Med. 1998;  25 481-490
  • 87 Behe M, Becker W, Gotthardt M, Angerstein C, Behr T M. Improved kinetic stability of DTPA- dGlu as compared with conventional monofunctional DTPA in chelating indium and yttrium: preclinical and initial clinical evaluation of radiometal labelled minigastrin derivatives.  Eur J Nucl Med Mol Imaging. 2003;  30 1140-1146
  • 88 Nock B A, Maina T, Behe M, Nikolopoulou A, Schmitt J S, Behr T M, Maecke H R. CCK-B/gastrin receptor - Targeted tumor imaging with 99mTc labeled minigastrin analogs.  J Nucl Med. 2004;  submitted

Dr. Matthias Friebe

Schering AG

DG RP S105

6. OG 610A

13342 Berlin

Phone: +49/30/46 81 18 28

Email: matthias.friebe@schering.de

    >