Zentralbl Chir 2005; 130(3): 202-212
DOI: 10.1055/s-2005-836578
Originalarbeiten und Übersichten

© Georg Thieme Verlag Stuttgart · New York

Die Schädigung viszeraler Organe durch Ischämie und Reperfusion. Abläufe in pathogenetischen Netzwerken

Injury to Visceral Organs by Ischemia and Reperfusion. Processes in Pathogenetic NetworksH. de Groot1
  • 1Institut für Physiologische Chemie, Universitätsklinikum Essen
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
20. Juni 2005 (online)

Zusammenfassung

Die Schädigung der viszeralen Organe Leber, Magen/Darm und Pankreas durch Ischämie und Reperfusion lässt sich als ein Geschehen verstehen, dessen Ereignisse Knotenpunkte in pathogenetischen Netzwerken darstellen. In der Phase der Ischämie steht die Schädigung von Zellen durch Sauerstoffmangel im Vordergrund. Initiales Ereignis ist die verminderte mitochondriale Energiebereitstellung. Veränderungen im Ionenhaushalt, die Aktivierung von Hydrolasen sowie die Bildung großer Poren in den Mitochondrienmembranen, der sog. mitochondriale Permeabilitätsübergang, sind weitere wichtige Ereignisse im Netzwerk der hypoxischen Zellschädigung. Die Zellschädigung in der Phase der Reperfusion ist entweder eine Folge von aus der Phase der Ischämie stammenden Veränderungen in den Zellen oder das Resultat einer inflammatorischen Gewebereaktion. In beiden Fällen sind reaktive Sauerstoffspezies wichtige Auslöser der Zellschädigung. Zu den Ereignissen im Netzwerk der Zellschädigung gehören in dieser Phase Störungen des Glutathion-Gleichgewichts und im Kalzium-Haushalt sowie erneut der mitochondriale Permeabilitätsübergang und die Aktivierung von Hydrolasen. Mehr noch als die intrazellulären Ereignisse der Zellschädigung sind die Ereignisse der inflammatorischen Gewebereaktion netzartig miteinander verknüpft. Ausgehend von bereits geschädigten Zellen bilden die vermehrte Freisetzung reaktiver Sauerstoffspezies, von Stickstoffmonoxid und anderen Botenstoffen, die Aktivierung von Makrophagen, Neutrophilen, Endothelzellen, Lymphozyten und des Komplementsystems sowie Störungen der Mikrozirkulation ein Netzwerk an interagierenden Ereignissen, das zu einer Perpetuierung der Gewebeschädigung führt. Aufgrund der netzartigen Verknüpfung der Ereignisse der Zell- und Gewebeschädigung lässt sich eine Vielzahl von Schädigungswegen konstruieren. Eine wichtige Konsequenz, die sich aus dem Konstrukt der pathogenetischen Netzwerke ergibt, ist deshalb die Forderung, dass eine effektive Therapie der Ischämie-Reperfusionsschädigung viszeraler Organe nur durch Blockade mehrerer zentraler Knotenpunkte zu erreichen ist.

Abstract

The injury of the visceral organs liver, stomach/intestine and pancreas by ischemia and reperfusion can be understood as a process, the events of which represent junctions in pathogenetic networks. In the phase of ischemia, damage of cells by oxygen deficiency is the center of the injurious process. The initial event is the decreased mitochondrial energy supply. Changes in ion homeostasis, activation of hydrolases as well as formation of large pores in the mitochondrial membranes, the so-called mitochondrial permeability transition, are other decisive events in the network of the hypoxic cell injury. Cell damage in the phase of reperfusion is either a consequence of changes in the cells, originating from the phase of ischemia, or the result of an inflammatory tissue reaction. In both cases reactive oxygen species are important triggers of the cell damage. Disturbances of the glutathione equilibrium and of the calcium balance as well as again the mitochondrial permeability transition and the activation of hydrolases belong to the events in the network of cell injury in this phase. Even more than the intracellular events of the cell damage, the events of the inflammatory tissue reaction are linked netlike with one another. Initiated by cells already damaged, an increased release of reactive oxygen species, nitrogen monoxide and other mediators, activation of macrophages, neutrophils, endothelial cells, lymphocytes and the complement system as well as disturbances of the microcirculation form a network of interacting events, which leads to a perpetuation of the tissue damage. A multiplicity of injurious pathways can be designed due to the netlike linkage of the events of the cell and tissue damage. An important consequence, which results from the construct of the pathogenetic networks, is therefore the demand that an effective therapy of the ischemia-reperfusion injury of visceral organs can be attained only by blockade of several central junctions.

Literatur

  • 1 Anadol A Z, Bayram O, Dursun A, Ercan S. Role of endogenous endothelin peptides in intestinal ischemia-reperfusion injury in rats.  Prostaglandins Leukot Essent Fatty Acids. 1998;  59 279-283
  • 2 Angermüller S, Schunk M, Kusterer K. Alteration of xanthine oxidase activity in sinusoidal endothelial cells and morphological changes of Kupffer cells in hypoxic and reoxygenated rat liver.  Hepatology. 1995;  21 1594-1601
  • 3 Anundi I, de Groot H. Hypoxic cell death in isolated hepatocytes: Critical Po2 and dependence of cell viability on the glycolytic capacity.  Am J Physiol. 1989;  257 G 58-G 64
  • 4 Arumugam T V, Shiels I A, Woodruff T M, Reid R C, Fairlie D P, Taylor S M. Protective effect of a new C5a receptor antagonist against ischemia-reperfusion injury in the rat small intestine.  J Surg Res. 2002;  103 260-267
  • 5 Atalla S L, Toledo-Pereyra L H, MacKenzie G H, Cederna J P. Influence of oxygen-derived free radical scavengers on ischemic livers.  Transplantation. 1985;  40 584-590
  • 6 Austen W G, Kyriakides C, Favuzza J, Wang Y, Kobzik L, Moore F D, Hechtman H B. Intestinal ischemia-reperfusion injury is mediated by the membrane attack complex.  Surgery. 1999;  126 343-348
  • 7 Aw T Y, Andersson B S, Jones D P. Mitochondrial transmembrane ion distribution during anoxia.  Am J Physiol. 1987;  252 C 356-C 361
  • 8 Ayub K, Serracino-Inglott F, Williamson R C, Mathie R T. Expression of inducible nitric oxide synthase contributes to the development of pancreatitis following pancreatic ischaemia and reperfusion.  Br J Surg. 2001;  88 1189-1193
  • 9 Bajt M L, Farhood A, Jaeschke H. Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature.  Am J Physiol. 2001;  281 G1188-G1195
  • 10 Baldwin W M, Pruitt S K, Brauer R B, Daha M R, Sanfilippo F. Complement in organ transplantation. Contributions to inflammation, injury, and rejection.  Transplantation. 1995;  59 797-808
  • 11 Benz S, Obermaier R, Wiessner R, Breitenbuch P V, Burska D, Weber H, Schnabel R, Mayer J, Pfeffer F, Nizze H, Hopt U T. Effect of nitric oxide in ischemia/reperfusion of the pancreas.  J Surg Res. 2002;  106 46-53
  • 12 Berger M L, Reynolds R C, Hagler H K, Bellotto D, Parsons D, Mulligan K J, Buja L M. Anoxic hepatocyte injury: role of reversible changes in elemental content and distribution.  Hepatology. 1989;  9 219-228
  • 13 Blanc M C, Housset C, Lasnier E, Rey C, Capeau J, Giboudeau J, Poupon R, Vaubourdolle M. Direct cytotoxicity of hypoxia-reoxygenation towards sinusoidal endothelial cells in the rat.  Liver. 1999;  19 42-49
  • 14 Brecht M, Brecht C, de Groot H. Late steady increase in cytosolic Ca2+ preceding hypoxic injury in hepatocytes.  Biochem J. 1992;  283 399-402
  • 15 Calabrese F, Valente M, Pettenazzo E, Ferraresso M, Burra P, Cadrobbi R, Cardin R, Bacelle L, Parnigotto A, Rigotti P. The protective effects of L-arginine after liver ischaemia/reperfusion injury in a pig model.  J Pathol. 1997;  183 477-485
  • 16 Caraceni P, Ryu H S, Thiel D H van, Borle A B. Source of oxygen free radicals produced by rat hepatocytes during postanoxic reoxygenation.  Biochim Biophys Acta. 1995;  1268 249-254
  • 17 Carini R, Bellomo G, Benedetti A, Fulceri R, Gamberucci A, Parola M, Dianzani M U, Albano E. Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion.  Hepatology. 1995;  21 1089-1098
  • 18 Chien K R, Abrams J, Serroni A, Martin J T, Farber J L. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury.  J Biol Chem. 1978;  253 4809-4817
  • 19 Colantoni A, de Maria N, Caraceni P, Bernardi M, Floyd R A, Thiel D H Van. Prevention of reoxygenation injury by sodium salicylate in isolated-perfused rat liver.  Free Radic Biol Med. 1998;  25 87-94
  • 20 Cottart C H, Do L, Blanc M C, Vaubourdolle M, Descamps G, Durand D, Galen F X, Clot J P. Hepatoprotective effect of endogenous nitric oxide during ischemia-reperfusion in the rat.  Hepatology. 1999;  29 809-813
  • 21 Crenesse D, Gugenheim J, Hornoy J, Tornieri K, Laurens M, Cambien B, Lenegrate G, Cursio R, De Souza G, Auberger P, Heurteaux C, Rossi B, Schmid-Alliana A. Protein kinase activation by warm and cold hypoxia-reoxygenation in primary-cultured rat hepatocytes - JNK(1)/SAPK(1) involvement in apoptosis.  Hepatology. 2000;  32 1029-1036
  • 22 Crompton M. The mitochondrial permeability transition pore and its role in cell death.  Biochem J. 1999;  341 233-249
  • 23 Cursio R, Gugenheim J, Ricci J E, Crenesse D, Rostagno P, Maulon L, Saint-Paul M C, Ferrua B, Auberger A P. A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis.  FASEB J. 1999;  13 253-261
  • 24 de Groot H, Littauer A. Reoxygenation injury in isolated hepatocytes: Cell death precedes conversion of xanthine dehydrogenase to xanthine oxidase.  Biochem Biophys Res Commun. 1988;  155 278-282
  • 25 Dennis S C, Gevers W, Opie L H. Protons in ischemia: where do they come from; where do they go to?.  J Mol Cell Cardiol. 1991;  23 1077-1086
  • 26 Dhar D K, Nagasue N, Kimoto T, Uchida M, Takemoto Y, Nakamura T. The salutary effect of FK506 in ischemia-reperfusion injury of the canine liver.  Transplantation. 1992;  54 583-588
  • 27 Dimakakos P B, Kotsis T, Kondi-Pafiti A, Katsenis K, Doufas A, Chondros K, Kouskouni E. Oxygen free radicals in abdominal aortic surgery. An experimental study.  J Cardiovasc Surg (Torino). 2002;  43 77-82
  • 28 Farber J L, Chien K R, Mittnacht S. The pathogenesis of irreversible cell injury in ischemia.  Am J Pathol. 1981;  102 271-281
  • 29 Farhood A, McGuire G M, Manning A M, Miyasaka M, Smith C W, Jaeschke H. Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver.  J Leukoc Biol. 1995;  57 368-374
  • 30 Ferguson D, McDonagh P F, Biewer J, Paidas C N, Clemens M G. Spatial relationship between leukocyte accumulation and microvascular injury during reperfusion following hepatic ischemia.  Int J Microcirc Clin Exp. 1993;  12 45-60
  • 31 Fiegen R J, Rauen U, Hartmann M, Decking U K, de Groot H. Decrease of ischemic injury to the isolated perfused rat liver by loop diuretics.  Hepatology. 1997;  25 1425-1431
  • 32 Frank A, Rauen U, de Groot H. Protection by glycine against hypoxic injury of rat hepatocytes: inhibition of ion fluxes through nonspecific leaks.  J Hepatol. 2000;  32 58-66
  • 33 Fujimoto K, Hosotani R, Wada M, Lee J, Koshiba T, Miyamoto Y, Doi R, Imamura M. Ischemia-reperfusion injury on the pancreas in rats: identification of acinar cell apoptosis.  J Surg Res. 1997;  71 127-136
  • 34 Gasbarrini A, Borle A B, Farghali H, Bender C, Francavilla A, Thiel D Van. Effect of anoxia on intracellular ATP, Nai +, Cai 2+, Mgi 2+, and cytotoxicity in rat hepatocytes.  J Biol Chem. 1992;  267 6654-6663
  • 35 Goto M, Takei Y, Kawano S, Nagano K, Tsuji S, Masuda E, Nishimura Y, Okumura S, Kashiwagi T, Fusamoto H, Kamada T. Endothelin-1 is involved in the pathogenesis of ischemia/reperfusion liver injury by hepatic microcirculatory disturbances.  Hepatology. 1994;  19 675-681
  • 36 Grotz M R, Deitch E A, Ding J, Xu D, Huang Q, Regel G. Intestinal cytokine response after gut ischemia: role of gut barrier failure.  Annals Surg. 1999;  229 478-486
  • 37 Gujral J S, Bucci T J, Farhood A, Jaeschke H. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis?.  Hepatology. 2001;  33 397-405
  • 38 Gunel E, Caglayan F, Caglayan O, Dilsiz A, Duman S, Aktan M. Treatment of intestinal reperfusion injury using antioxidative agents.  J Pediatr Surg. 1998;  33 1536-1539
  • 39 Gyenes M, de Groot H. Prostanoid release by Kupffer cells upon hypoxia-reoxygenation: role of pHi and Cai 2+.  Am J Physiol. 1993;  264 G 535-G 540
  • 40 Hakguder G, Akgur F, Ates O, Olguner M, Ozer E. Short-term intestinal ischemia-reperfusion alters intestinal motility that can be preserved by xanthine oxidase inhibition.  Dig Dis Sci. 2002;  47 1279-1283
  • 41 Harbrecht B G, Wu B, Watkins S C, Billiar T R, Peitzman A B. Inhibition of nitric oxide synthesis during severe shock but not after resuscitation increases hepatic injury and neutrophil accumulation in hemorrhaged rats.  Shock. 1997;  8 415-421
  • 42 Heuser M, Pfaar O, Gralla O, Grone H J, Nustede R, Post S. Impact of gastrin-releasing peptide on intestinal microcirculation after ischemia-reperfusion in rats.  Digestion. 2000;  61 172-180
  • 43 Hill J, Lindsay T F, Ortiz F, Yeh C G, Hechtman H B, Moore F D. Soluble complement receptor type 1 ameliorates the local and remote organ injury after intestinal ischemia-reperfusion in the rat.  J Immunol. 1992;  149 1723-1728
  • 44 Hochachka P W, Mommsen T P. Protons and anaerobiosis.  Science. 1983;  219 1391-1397
  • 45 Jaeschke H, Farhood A. Kupffer cell activation after no-flow ischemia versus hemorrhagic shock.  Free Radic Biol Med. 2002;  33 210-219
  • 46 Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver.  Am J Physiol. 1991;  260 G 355-G 362
  • 47 Jaeschke H, Farhood A, Bautista A P, Spolarics Z, Spitzer J J. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia.  Am J Physiol. 1993;  264 G 801-G 809
  • 48 Jaeschke H, Farhood A, Smith C W. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo.  FASEB J. 1990;  4 3355-3359
  • 49 Jaeschke H, Mitchell J R. Mitochondria and xanthine oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury.  Biochemic Biophysic Res Comm. 1989;  160 140-147
  • 50 Jaeschke H, Smith C W. Mechanisms of neutrophil-induced parenchymal cell injury.  J Leukoc Biol. 1997;  61 647-653
  • 51 Joh T, Ikai M, Oshima T, Kurokawa T, Seno K, Yokoyama Y, Okada N, Itoh M. Complement plays an important role in gastric mucosal damage induced by ischemia-reperfusion in rats.  Life Sci. 2001;  70 109-117
  • 52 Kalia N, Pockley A G, Wood R F, Brown N J. Effects of FK409 on intestinal ischemia-reperfusion injury and ischemia-induced changes in the rat mucosal villus microcirculation.  Transplantation. 2001;  72 1875-1880
  • 53 Kawata K, Takeyoshi I, Iwanami K, Sunose Y, Aiba M, Ohwada S, Matsumoto K, Morishita Y. A spontaneous nitric oxide donor ameliorates small bowel ischemia-reperfusion injury in dogs.  Dig Dis Sci. 2001;  46 1748-1756
  • 54 Kobayashi S, Miescher E, Clemens M G. A synergistic effect of extracellular hypocalcemic condition for hyperoxic reoxygenation injury in rat hepatocytes.  Transplantation. 1999;  67 451-457
  • 55 Koeppel T A, Thies J C, Schemmer P, Trauner M, Gebhard M M, Otto G, Post S. Inhibition of nitric oxide synthesis in ischemia/reperfusion of the rat liver is followed by impairment of hepatic microvascular blood flow.  J Hepatol. 1997;  27 163-169
  • 56 Koo A, Komatsu H, Tao G, Inoue M, Guth P H, Kaplowitz N. Contribution of no-reflow phenomenon to hepatic injury after ischemia-reperfusion: evidence for a role for superoxide anion.  Hepatology. 1992;  15 507-514
  • 57 Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis.  Annu Rev Physiol. 1998;  60 619-642
  • 58 Kurokawa T, Kobayashi H, Nonami T, Harada A, Nakao A, Sugiyama S, Ozawa T, Takagi H. Beneficial effects of cyclosporine on postischemic liver injury in rats.  Transplantation. 1992;  53 308-311
  • 59 Lehmann T G, Koeppel T A, Munch S, Heger M, Kirschfink M, Klar E, Post S. Impact of inhibition of complement by sCR1 on hepatic microcirculation after warm ischemia.  Microvasc Res. 2001;  62 284-292
  • 60 Lentsch A B, Kato A, Yoshidome H, McMasters K M, Edwards M J. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury.  Hepatology. 2000;  32 169-173
  • 61 Littauer A, de Groot H. Release of reactive oxygen by hepatocytes on reoxygenation: three phases and role of mitochondria.  Am J Physiol. 1992;  262 G 1015-G 1020
  • 62 Luo C C, Chen H M, Chiu C H, Lin J N, Chen J C. Effect of N(G)-nitro-L-arginine methyl ester on intestinal permeability following intestinal ischemia-reperfusion injury in a rat model.  Biol Neonate. 2001;  80 60-63
  • 63 Matsumura F, Yamaguchi Y, Goto M, Ichiguchi O, Akizuki E, Matsuda T, Okabe K, Liang J, Ohshiro H, Iwamoto T, Yamada S, Mori K, Ogawa M. Xanthine oxidase inhibition attenuates Kupffer cell production of neutrophil chemoattractant following ischemia-reperfusion in rat liver.  Hepatology. 1998;  28 1578-1587
  • 64 Menger M D, Plusczyk T, Vollmar B. Microcirculatory derangements in acute pancreatitis.  J Hepatobiliary Pancreat Surg. 2001;  8 187-194
  • 65 Menger M D, Rucker M, Vollmar B. Capillary dysfunction in striated muscle ischemia/reperfusion: on the mechanisms of capillary “no-reflow”.  Shock. 1997;  8 2-7
  • 66 Natarajan R, Fisher B J, Jones D G, Ghosh S, Fowler A A. Reoxygenating microvascular endothelium exhibits temporal dissociation of NF-kappaB and AP-1 activation.  Free Radic Biol Med. 2002;  32 1033-1045
  • 67 Ohmori H, Dhar D K, Nakashima Y, Hashimoto M, Masumura S, Nagasue N. Beneficial effects of FK409, a novel nitric oxide donor, on reperfusion injury of rat liver.  Transplantation. 1998;  66 579-585
  • 68 Pastorino J G, Snyder J W, Hoek J B, Farber J L. Ca2+ depletion prevents anoxic death of hepatocytes by inhibiting mitochondrial permeability transition.  Am J Physiol. 1995;  268 C 676-C 685
  • 69 Pastorino J G, Snyder J W, Serroni A, Hoek J B, Farber J L. Cyclosporine and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition.  J Biol Chem. 1993;  268 13 791-13 798
  • 70 Pastorino J G, Wilhelm T J, Glascott P A, Kocsis J J, Farber J L. Dexamethasone induces resistance to the lethal consequences of electron transport inhibition in cultured hepatocytes.  Arch Biochem Biophys. 1995;  318 175-181
  • 71 Petrat F, de Groot H, Sustmann R, Rauen U. The chelatable iron pool in living cells: a methodically defined quantity.  Biol Chem. 2002;  383 489-502
  • 72 Pillai S B, Hinman C E, Luquette M H, Nowicki P T, Besner G E. Heparin-binding epidermal growth factor-like growth factor protects rat intestine from ischemia/reperfusion injury.  J Surgic Res. 1999;  87 225-231
  • 73 Rabb H. The T cell as a bridge between innate and adaptive immune systems: Implications for the kidney.  Kidney Int. 2002;  61 1935-1946
  • 74 Rosser B G, Gores G J. Liver cell necrosis: cellular mechanisms and clinical implications.  Gastroenterology. 1995;  108 252-275
  • 75 Rymsa B, Wang J F, de Groot H. O2 --release by activated Kupffer cells upon hypoxia-reoxygenation.  Am J Physiol. 1991;  261 G 602-G 607
  • 76 Samarasinghe D A, Tapner M, Farrell G C. Role of oxidative stress in hypoxia-reoxygenation injury to cultured rat hepatic sinusoidal endothelial cells.  Hepatology. 2000;  31 160-165
  • 77 Sanfey H, Sarr M G, Bulkley G B, Cameron J L. Oxygen-derived free radicals and acute pancreatitis: a review.  Acta Physiol Scand. 1986;  548 (Suppl) 109-118
  • 78 Saxton N E, Barclay J L, Clouston A D, Fawcett J. Cyclosporin A pretreatment in a rat model of warm ischaemia/reperfusion injury.  J Hepatol. 2002;  36 241-247
  • 79 Shimizu S, Kamiike W, Hatanaka N, Nishimura M, Miyata M, Inoue T, Yoshida Y, Tagawa K, Matsuda H. Enzyme release from mitochondria during reoxygenation of rat liver.  Transplantation. 1994;  57 144-148
  • 80 Shiraishi M, Hiroyasu S, Nagahama M, Miyaguni T, Higa T, Tomori H, Okuhama Y, Kusano T, Muto Y. Role of exogenous L-arginine in hepatic ischemia-reperfusion injury.  J Surg Res. 1997;  69 429-434
  • 81 Soeda J, Miyagawa S, Sano K, Masumoto J, Taniguchi S, Kawasaki S. Cytochrome c release into cytosol with subsequent caspase activation during warm ischemia in rat liver.  Am J Physiol. 2001;  281 G1115-G1123
  • 82 Souza D G, Cassali G D, Poole S, Teixeira M M. Effects of inhibition of PDE4 and TNF-alpha on local and remote injuries following ischaemia and reperfusion injury.  Br J Pharmacol. 2001;  134 985-994
  • 83 Takada D, Yamashita K, Sakurai-Yamashita Y, Shigematsu K, Hamada Y, Hioki K, Taniyama K. Participation of nitric oxide in the mucosal injury of rat intestine induced by ischemia-reperfusion.  J Pharmac Experim Therap. 1998;  287 403-407
  • 84 Tamura K, Manabe T, Kyogoku T, Andoh K, Ohshio G, Tobe T. Effect of postischemic reperfusion on the pancreas.  Hepatogastroenterology. 1993;  40 452-456
  • 85 Uhlmann D, Uhlmann S, Loffler B M, Witzigmann H, Spiegel H U. Pharmacological regulation of postischemic sinusoidal diameters in rats - a new approach for reducing hepatic ischemia/reperfusion injury.  Clin Hemorheol Microcirc. 2001;  24 233-246
  • 86 Wheeler M D, Katuna M, Smutney O M, Froh M, Dikalova A, Mason R P, Samulski R J, Thurman R G. Comparison of the effect of adenoviral delivery of three superoxide dismutase genes against hepatic ischemia-reperfusion injury.  Hum Gene Ther. 2001;  12 2167-2177
  • 87 Williams J P, Pechet T T, Weiser M R, Reid R, Kobzik L, Moore F D, Carroll M C, Hechtman H B. Intestinal reperfusion injury is mediated by IgM and complement.  J Appl Physiol. 1999;  86 938-942
  • 88 Wu B, Iwakiri R, Tsunada S, Utsumi H, Kojima M, Fujise T, Ootani A, Fujimoto K. iNOS enhances rat intestinal apoptosis after ischemia-reperfusion.  Free Radic Biol Med. 2002;  33 649-658
  • 89 Wu T W, Hashimoto N, Au J X, Wu J, Mickle D A, Carey D. Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury.  Hepatology. 1991;  13 575-580
  • 90 Yamamoto H, Sugitani A, Kitada H, Arima T, Nishiyama K, Motoyama K, Shiiba M, Kawano R, Morisaki T, Nakafusa Y, Tanaka M. Effect of FR167653 on pancreatic ischemia-reperfusion injury in dogs.  Surgery. 2001;  129 309-317
  • 91 Zahrebelski G, Nieminen A L, al-Ghoul K, Qian T, Herman B, Lemasters J J. Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes: a laser scanning confocal microscopic study.  Hepatology. 1995;  21 1361-1372
  • 92 Zwacka R M, Zhang Y, Halldorson J, Schlossberg H, Dudus L, Engelhardt J F. CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver.  J Clin Invest. 1997;  100 279-289

1 7 mmHg entspricht ca. 1 % O2.

2 Der Punkt in den Molekülformeln steht für ein ungepaartes Elektron und zeigt damit eine radikalische Spezies an.

3 Stickstoffmonoxid (.NO) wird hier gesondert aufgeführt, da es sehr intensiv untersucht worden ist und nicht nur Mediatorfunktion besitzt.

Prof. Dr. Dr. Herbert de Groot

Institut für Physiologische Chemie, Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

Telefon: 02 01/7 23 41 00

Fax: 02 01/7 23 59 43

eMail: h.de.groot@uni-essen.de

    >