Klin Padiatr 2006; 218(4): 237-242
DOI: 10.1055/s-2005-836596
Original Article

© Georg Thieme Verlag Stuttgart · New York

Baroreflex Sensitivity in Children, Adolescents, and Young Adults with Essential and White-Coat Hypertension

Baroreflexsensitivität bei Kindern, Jugendlichen und jungen Erwachsenen mit essentieller und „Weißkittelhypertonie”N. Honzíková1 , Z. Nováková1 , E. Závodná1 , J. Paděrová2 , P. Lokaj1 , B. Fišer1 , P. Balcárková1 , H. Hrstková2
  • 1Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
  • 2Department of Paediatrics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. Juni 2005 (online)

Abstract

Hypertension, which is a common cardiovascular disease in adults, could originate in childhood. The aim of the study was to show differences in baroreflex sensitivity and short-term blood-pressure variability between healthy and hypertensive children, adolescents and young adults, and those with white-coat effect with respect to obesity. We examined 54 subjects (11-21 years) who had repeatedly high causal blood pressure. Basing on 24-hour blood pressure monitoring, the subjects were divided into groups: 24 subjects with hypertension (Hy) and 30 subjects with white-coat effect (WhC). Hy and WhC subjects were compared with age-matched healthy controls in a ratio of 1 : 2 for both groups: 48 controls for hypertensive subjects (CoHy) and 60 for subjects with white-coat effect (CoWhC). Totally, 162 subjects were studied. Systolic blood pressure (SBP) and inter-beat intervals (IBI) were recorded in all subjects for 5 min (Finapres, metronome controlled breathing at a frequency of 0.33 Hz). The power spectra of SBP and IBI were calculated. Indices of baroreflex sensitivity (BRS [ms/mmHg] and BRSf [mHz/mmHg]) were determined by the cross-spectral method. The SBP variability was determined as SBP spectral power in the range of 10-second rhythm (SBP0.1Hz). The body mass index (BMI) was significantly higher in both Hy and WhC compared with their controls (Hy vs. CoHy; WhC vs. CoWhC: 24.6 ± 6.0 kg/m2 vs. 20.4 ± 2.8 kg/m2, p < 0.001; 23.2 ± 5.9 kg/m2 vs. 20.3 ± 2.6 kg/m2, p < 0.05). BRS was significantly decreased in both groups (Hy vs. CoHy; WhC vs. CoWhC: 6.0 ± 2.7 ms/mmHg vs. 9.5 ± 3.9 ms/mmHg, p < 0.001; 7.2 ± 3.1 ms/mmHg vs. 10.9 ± 6.2 ms/mmHg, p < 0.01), and BRSf as well (Hy vs. CoHy; WhC vs. CoWhC: 10.8 ± 4.6 mHz/mmHg vs. 16.2 ± 6.1 mHz/mmHg, p < 0.001; 13.0 ± 4.9 mHz/mmHg vs. 18.3 ± 8.7 mHz/mmHg, p < 0.01). The decrease of baroreflex sensitivity was linked with the increase in the variability of SBP0.1Hz, which was significant in hypertensives only (Hy vs. CoHy; WhC vs. CoWhC: 142 ± 96 mmHg2/Hz vs. 94 ± 83 mmHg2/Hz, p < 0.01; 121 ± 131 mmHg2/Hz vs. 107 ± 98 mmHg2/Hz). Conclusion: The mild increase of BMI was associated with white-coat effect and a BRS and BRSf decrease. The greater increase of BMI was associated with hypertension and a deeper BRS and BRSf decrease. This greater decrease of BRS and BRSf in hypertensives was linked with the increased SBP-variability.

Zusammenfassung

Hypertonie ist eine häufige Erkrankung bei Erwachsenen und beginnt oft im Kindesalter. Das Ziel unserer Studie war, Unterschiede in der Baroreflexsensitivität und der kurzzeitigen Blutdruckvariabilität zwischen gesunden, hypertonen Individuen und Probanden mit „Weißkittelhypertonie” im Kindes-, Jugendlichen- bzw. jungen Erwachsenenalter mit besonderem Augenmerk auf bestehende Obesität zu evaluieren. Wir untersuchten 54 Personen im Alter von 11 bis 21 Jahren, die während Wiederholungsmessungen einen hohen Blutdruck hatten. Aufgrund der 24-Stunden-Blutdruckmessung wurden die Versuchspersonen in zwei Gruppen unterteilt: 24 Personen mit Hypertonie (Hy) und 30 Personen mit „Weißkittelhypertonie” (WhC). Beide Gruppen wurden mit gesunden Probanden desselben Alters im Verhältnis 1 : 2 verglichen: 48 Kontrollpersonen für Hypertoniker (CoHy) und 60 Kontrollpersonen für die Gruppe „Weißkittelhypertonie” (CoWhC); insgesamt wurden 162 Personen untersucht. Der systolische Blutdruck (SBP) und die Zwischenschlagintervalle (IBI) wurden 5 Minuten bei jeder Person aufgenommen (Finapres, metronomkontrollierte Atmung mit einer Frequenz von 0,33 Hz). Die Leistungsspektren von SBP und IBI wurden kalkuliert. Mittels der Cross-Spektralmethode wurden die Indizes der Baroreflexsensitivität (BRS [ms/mmHg] und BRSf [mHz/mmHg]) festgestellt. Die SBP-Variabilität wurde als SBP-Spektralleistung im Frequenzbereich eines 10-Sekunden-Rhythmus (SBP0.1Hz) definiert. Der BMI (Bodymass-Index) war in beiden Gruppen (Hy und WhC) im Vergleich zu den Kontrollgruppen signifikant erhöht (Hy vs. CoHy; WhC vs. CoWhC: 24,6 ± 6,0 kg/m2 vs. 20,4 ± 2,8 kg/m2, p < 0,001; 23,2 ± 5,9 kg/m2 vs. 20,3 ± 2,6 kg/m2, p < 0,05). Demgegenüber zeigte sich die BRS in beiden Gruppen signifikant vermindert (Hy vs. CoHy; WhC vs. CoWhC: 6,0 ± 2,7 ms/mmHg vs. 9,5 ± 3,9 ms/mmHg, p < 0,001; 7,2 ± 3,1 ms/mmHg vs. 10,9 ± 6,2 ms/mmHg, p < 0,01), ebenfalls die BRSf (Hy vs. CoHy; WhC vs. CoWhC: 10,8 ± 4,6 mHz/mmHg vs. 16,2 ± 6,1 mHz/mmHg, p < 0,001; 13,0 ± 4,9 mHz/mmHg vs. 18,3 ± 8,7 mHz/mmHg, p < 0,01). Die Verminderung der Baroreflexsensitivität ging mit einer SBP0.1Hz-Erhöhung einher, die nur bei den Hypertonikern eine Signifikanz erreichte (Hy vs. CoHy; WhC vs. CoWhC: 142 ± 96 mmHg2/Hz vs. 94 ± 83 mmHg2/Hz, p < 0,01; 121 ± 131 mmHg2/Hz vs. 107 ± 98 mmHg2/Hz). Schlussfolgerung: Eine milde BMI-Erhöhung geht oft mit dem „Weißkitteleffekt” und einer Verminderung von BRS sowie BRSf einher, eine stärkere Erhöhung des BMI ist mit Hypertonie und einer größeren Verminderung von BRS und BRSf vergesellschaftet. Diese bei Hypertonikern größere Verminderung von BRS und BRSf war an die SBP0.1Hz-Erhöhung gekoppelt.

References

  • 1 All-Kubati M AA, Fišer B, Siegelova J. Baroreflex sensitivity during psychological stress.  Physiol Res. 1997;  46 31-37
  • 2 De Vries R, Lefrandt J D, Beltman F, Smit A J, May J. Increased intima media thickness of the carotid artery negatively affects baroreflex function in mid to moderate hypertensive subjects.  J Hypertens. 2000;  18 (Suppl 2) S 134
  • 3 Gollasch M, Tank J, Luft F C, Jordan J, Maass P, Krasko C, Sharma A M, Busjahn A, Bähring S. The BK channel β1 subunit gene is associated with human baroreflex and blood pressure regulation.  J Hypertens. 2002;  20 927-933
  • 4 Gordon N F, Scott C B, Levine B D. Comparison of single versus multiple lifestyle interventions: are the antihypertensive effects of exercise training and diet-induced weight loss additive?.  Am J Cardiol. 1997;  79 763-767
  • 5 Gribbin B, Pickering E G, Sleight P, Peto R. Effect of age and high blood pressure on baroreflex sensitivity in man.  Circ Res. 1971;  29 424-431
  • 6 Honzíková N, Fišer B, Honzík J. Noninvasive determination of baroreflex sensitivity in man by means of spectral analysis.  Physiol Res. 1992;  41 31-37
  • 7 Honzíková N, Fišer B, Semrad B. Critical value of baroreflex sensitivity determined by spectral analysis in risk stratification after myocardial infarction.  PACE. 2000;  23 (Pt II) 1965-1967
  • 8 Honzíková N, Fišer B, Semrad B, Labrova R. Baroreflex sensitivity determined by spectral method and heart rate variability, and two-years mortality in patients after myocardial infarction.  Physiol Res. 2000;  49 643-650
  • 9 Honzíková N, Krtička A, Nováková Z, Závodná E. A dampening effect of pulse interval variability on blood pressure variations with respect to primary variability in blood pressure during exercise.  Physiol Res. 2003;  52 299-309
  • 10 Honzíková N, Závodná E, Nováková Z, Paděrová J, Hrstková H. Early signs of increased sympathetic and decreased parasympathetic activity in young hypertensives. In: Jan J, Kozumplík J, Provazník I (Eds.). Analysis of Biomedical Signals and Images. Proceedings. Vutium Press, Brno University of Technology 2004; 63-65
  • 11 Hubert H B, Feinleib M, McNamara P M, Castelli W P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study.  Circulation. 1983;  67 968-977
  • 12 Kardos A, Rudas L, Gingl Z, Szabados S, Simon J. The mechanism of blood pressure variability: Study in patients with fixed ventricular pacemaker rhythm.  European Heart Journal. 1995;  16 545-552
  • 13 Kriketos A D, Robertson R M, Sharp T A, Drougas H, Reed G W, Storlien L H, Hill J O. Role of weight loss and polyunsaturated fatty acids in improving metabolic fitness in moderate obese, moderately hypertensive subjects.  J Hypertens. 2001;  19 1745-1754
  • 14 La Rovere M T, Bigger J T, Marcus F I. et al . Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic tone and reflexes after myocardial infarction) investigators.  Lancet. 1998;  351 478-484
  • 15 Lurba E, Alvarez V, Liao Y, Tacons J, Cooper R, Cremades B, Torro I, Redon J. The impact of obesity and body fat distribution on ambulatory blood pressure in children and adolescents.  Am J Hypertens. 1998;  11 (Pt 1) 418-424
  • 16 McCarron P, Smith G D, Okasha M, McEwen J. BP in young adulthood and mortality from cardiovascular disease.  Lancet. 2000;  355 1430-1431
  • 17 Nováková Z, Honzíková N, Závodná E, Hrstková H, Václavková P. Baroreflex sensitivity and body growth parameters in children and adolescents.  Exp Clin Cardiol. 2001;  6 35-37
  • 18 Nováková Z, Fišer B, Honzíková N, Závodná E, Hrstková H, Hak J, Václavková P. Autonomic control of the heart in relation to anthropomethric characteristics in children and adolescents.  Scripta Medica. 2002;  75 217-222
  • 19 Persson P B, DiRienzo M, Castiglioni P, Cerruti C, Pagani M, Honzikova N, Akselrod S, Parati G. Time versus frequency domain techniques for assessing baroreflex sensitivity.  J Hypertens. 2001;  19 1699-1705
  • 20 Rahmouni K, Correla M LG, Haynes W G, Mark A L. Obesity-associated hypertension - New insight into mechanisms.  Hypertension. 1005;  45 9-14
  • 21 Robe H JW, Mulder L JM, Rudel H, Langewitz W A, Veldman J BP, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis.  Hypertension. 1987;  10 538-543
  • 22 Soergel M, Kirschstein M, Busch C h, Kanne T, Gellermann J, Hall R, Krull F, Reichert H, Reusz G S, Rascher W. Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents. A multicenter trial including 1 141 subjects.  J Pediatr. 1997;  130 178-184
  • 23 Update on the 1987 Task Force Report on High Blood Pressure in Children and Adolescents: A working group report from the Nation High Blood Pressure Education Program.  Pediatrics. 1996;  98 649-658
  • 24 Vos L E, Oren A, Bots M L, Gorissen W HM, Grobbee D E, Uiterwaal C S. Does a routinely measured blood presure in young adolescence accurately predict hypertension and total cardiovascular risk in young adulthood?.  J Hypertens. 2003;  21 2027-2034
  • 25 Závodná E, Honzíková N, Nováková Z, Hrstková H. Changes in blood pressure variability in adolescents with essential hypertension.  J Hypertens. 2004;  22 (Suppl 2) S 72

Prof. MUDr. Natasa HonzikovaCSc. 

Department of Physiology · Faculty of Medicine · Masaryk University

Komenskeho nam. 2

66243 Brno

Czech Republic

eMail: nhonziko@med.muni.cz