Int J Sports Med 2006; 27(1): 67-74
DOI: 10.1055/s-2005-837486
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Degree of Coordination between Breathing and Rhythmic Arm Movements During Hand Rim Wheelchair Propulsion

N. Fabre1 , S. Perrey2 , L. Arbez1 , J. Ruiz1 , N. Tordi1 , J. D. Rouillon1
  • 1Laboratoire des Sciences du Sport, Besançon, France
  • 2EA 2991, UFR STAPS, Montpellier, France
Further Information

Publication History

Accepted after revision: December 6, 2004

Publication Date:
02 June 2005 (online)

Abstract

This study aimed (i) to quantify the spontaneous coordination between breathing and hand rim wheelchair propulsion, (ii) to manipulate arm movement frequency and assess its effects on spontaneous coordination, and (iii) to investigate the hypothesis that entrainment of breathing improves economy of locomotion and leads to a lower rate of perceived exertion (RPE) compared with spontaneous breathing. Nine male, able-bodied participants completed four bouts of 6 min submaximal steady state exercise at 60 % of maximal propulsion velocity on a wheelchair ergometer, with spontaneous breathing and arm frequencies (Fspont), with 20 % higher and lower arm frequencies (F +20 and F -20, respectively) compared to Fspont accompanied with spontaneous breathing frequency, and by synchronising expiration phase with pushing time and inspiration phase with upper limb recovery time (C). Oxygen uptake and propulsion frequency were continuously recorded. The degree of coordination was expressed as a percentage of inspiration starting in the same phase of the wheelchair propulsion cycle (i.e. pushing and recovery times). No difference in degree of coordination was observed between Fspont, F -20 and F +20 conditions (49.2 ± 12.1 %, 49.1 ± 29.0 % and 48.2 ± 29.4 %, respectively). Oxygen uptake increased significantly during C condition while RPE was significantly lower for C and F -20 (p < 0.05) compared to F +20 conditions. Contrary to what we expected, entrainment of breathing using a monofrequency ratio (C) induced a higher energy cost probably due to the mechanical properties of the wheelchair propulsion activity itself. In conclusion, this study showed that the same locomotor-respiratory coupling occurred during hand rim wheelchair propulsion regardless of the arm movement frequency, and that entrainment of breathing did not improve economy of locomotion.

References

  • 1 Amazeen P G, Amazeen E L, Beek P J. Coupling of breathing and movement during manual wheelchair propulsion.  J Exp Psychol Hum Percept Perform. 2001;  27 1243-1259
  • 2 Bechbache R R, Duffin J. The entrainment of breathing frequency by exercise rhythm.  J Physiol. 1977;  272 553-561
  • 3 Bernasconi P, Burki P, Buhrer A, Koller E A, Kohl J. Running training and co-ordination between breathing and running rhythms during aerobic and anaerobic conditions in humans.  Eur J Appl Physiol. 1995;  70 387-393
  • 4 Bernasconi P, Kohl J. Analysis of co-ordination between breathing and exercise rhythms in man.  J Physiol. 1993;  471 693-706
  • 5 Borg G A. Psychophysical bases of perceived exertion.  Med Sci Sports Exerc. 1982;  14 377-381
  • 6 Bramble D M, Carrier D R. Running and breathing in mammals.  Science. 1983;  219 251-256
  • 7 Cunningham D A, Goode P B, Critz J B. Cardiorespiratory response to exercise on a rowing and bicycle ergometer.  Med Sci Sports. 1975;  7 37-43
  • 8 Devillard X, Calmels P, Sauvignet B, Belli A, Denis C, Simard C, Gautheron V. Validation of a new ergometer adapted to all types of manual wheelchair.  Eur J Appl Physiol. 2001;  85 479-485
  • 9 Faria I E. Ventilatory response pattern of Nordic skiers during simulated poling.  J Sports Sci. 1994;  12 255-259
  • 10 Garlando F, Kohl J, Koller E A, Pietsch P. Effect of coupling the breathing and cycling rhythms on oxygen uptake during bicycle ergometry.  Eur J Appl Physiol. 1985;  54 497-501
  • 11 Glaser R M, Sawka M N, Young R E, Suryaprasad A G. Applied physiology for wheelchair design.  J Appl Physiol. 1980;  48 41-44
  • 12 Gonzalez D L, Piro O. Symmetric kicked self-oscillators: iterated maps, strange attractors, and symmetry of the phase-locking Farey hierarchy.  Phys Rev Lett. 1985;  55 17-20
  • 13 Goosey V L, Campbell I G, Fowler N E. Effect of push frequency on the economy of wheelchair racers.  Med Sci Sports Exerc. 2000;  32 174-181
  • 14 Harms C A, Wetter T J, Croix St CM, Pegelow D F, Dempsey J A. Effects of respiratory muscle work on exercise performance.  J Appl Physiol. 2000;  89 131-138
  • 15 Helliwell P, Howe A, Wright V. Functional assessment of the hand: reproducibility, acceptability, and utility of a new system for measuring strength.  Ann Rheum Dis. 1987;  46 203-208
  • 16 Hill A R, Adams J M, Parker B E, Rochester D F. Short-term entrainment of ventilation to the walking cycle in humans.  J Appl Physiol. 1988;  65 570-578
  • 17 Iscoe S, Polosa C. Synchronization of respiratory frequency by somatic afferent stimulation.  J Appl Physiol. 1976;  40 138-148
  • 18 Janssen T W, van Oers C A, Hollander A P, Veeger H E, van der Woude L H. Isometric strength, sprint power, and aerobic power in individuals with a spinal cord injury.  Med Sci Sports Exerc. 1993;  25 863-870
  • 19 Lafortuna C L, Reinach E, Saibene F. The effects of locomotor-respiratory coupling on the pattern of breathing in horses.  J Physiol. 1996;  492 587-596
  • 20 MacDonald M L, Kirby R L, Nugent S T, MacLeod D A. Locomotor-respiratory coupling during wheelchair propulsion.  J Appl Physiol. 1992;  72 1375-1379
  • 21 MacLennan S E, Silvestri G A, Ward J, Mahler D A. Does entrained breathing improve the economy of rowing?.  Med Sci Sports Exerc. 1994;  26 610-614
  • 22 Mahler D A, Shuhart C R, Brew E, Stukel T A. Ventilatory responses and entrainment of breathing during rowing.  Med Sci Sports Exerc. 1991;  23 186-192
  • 23 Mulroy S J, Gronley J K, Newsam C J, Perry J. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons.  Arch Phys Med Rehabil. 1996;  77 187-193
  • 24 Raßler B, Kohl J. Analysis of coordination between breathing and walking rhythms in humans.  Respir Physiol. 1996;  106 317-327
  • 25 Siegmund G P, Edwards M R, Moore K S, Tiessen D A, Sanderson D J, McKenzie D C. Ventilation and locomotion coupling in varsity male rowers.  J Appl Physiol. 1999;  87 233-242
  • 26 Sternad D, Turvey M T, Saltzman E L. Dynamics of 1: 2 coordination: Generalizing relative phase to n:m rhythms.  J Mot Behav. 1999;  31 207-223
  • 27 Takano N, Deguchi H. Sensation of breathlessness and respiratory oxygen cost during cycle exercise with and without conscious entrainment of the breathing rhythm.  Eur J Appl Physiol. 1997;  76 209-213
  • 28 van der Woude L H, Veeger H E, Rozendal R H, Sargeant A J. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.  Eur J Appl Physiol. 1989;  58 625-632
  • 29 Veeger H EJ, Van Der Woude L HV, Rozendal R H, Bieleman H J, Paul J A. EMG and movement pattern in manual wheelchair propulsion. Wallinga W, Boom HBK, Vries JD Electrophysiological Kinesiology. Amsterdam; Elsevier Science Publishers (Biomedical Division) 1988: 489-492
  • 30 Viala D. Evidence for direct reciprocal interactions between the central rhythm generators for spinal “respiratory” and locomotor activities in the rabbit.  Exp Brain Res. 1986;  63 225-232
  • 31 Viala D, Freton E. Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions.  Exp Brain Res. 1983;  49 247-256
  • 32 Weissman C, Askanazi J, Milic-Emili J, Kinney J M. Effect of respiratory apparatus on respiration.  J Appl Physiol. 1984;  57 475-480
  • 33 Wetter T J, Harms C A, Nelson W B, Pegelow D F, Dempsey J A. Influence of respiratory muscle work on V·O(2) and leg blood flow during submaximal exercise.  J Appl Physiol. 1999;  87 643-651

PhD Stéphane Perrey

EA 2991 Efficience et Déficience Motrices

700 avenue du Pic Saint Loup

34090 Montpellier

France

Phone: + 33467415761

Fax: + 33 4 67 41 57 08

Email: stephane.perrey@univ-montp1.fr