Int J Sports Med 2006; 27(1): 25-30
DOI: 10.1055/s-2005-837488
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Effect of High-Intensity Intermittent Cycling Sprints on Neuromuscular Activity

F. Billaut1 , F. A. Basset2 , M. Giacomoni1 , F. Lemaître3 , V. Tricot1 , G. Falgairette1
  • 1Laboratoire Ergonomie Sportive et Performance - EA 3162, Université du Sud Toulon-Var, Toulon, France
  • 2School of Human Kinetics and Recreation, Memorial University of Newfoundland, St-John's, NL, Canada
  • 3Centre d'Étude des Transformations et des Activités Physiques et Sportives - JE UPRES n°2318, Université des Sciences du Sport et de l'Éducation Physique, Mont Saint Aignan, France
Further Information

Publication History

Accepted after revision: November 25, 2004

Publication Date:
09 May 2005 (online)

Abstract

High-intensity intermittent sprints induce changes in metabolic and mechanical parameters. However, very few data are available about electrical manifestations of muscle fatigue following such sprints. In this study, quadriceps electromyographic (EMG) responses to repeated all-out exercise bouts of short duration were assessed from maximal voluntary isometric contractions (MVC) performed before and after sprints. Twelve men performed ten 6-s maximal cycling sprints, separated by 30-s rest. The MVC were performed pre-sprints (pre), post-sprints (post), and 5 min post-sprints (post5). Values of root-mean-square (RMS) and median frequency (MF) of vastus lateralis (VL) and vastus medialis (VM) were recorded during each MVC. During sprints, PPO decreased significantly in sprints 8, 9, and 10, compared to sprint 1 (- 8 %, - 10 %, and - 11 %, respectively, p < 0.05). Significant decrements were found in MVCpost (- 13 %, p < 0.05) and MVCpost5 (- 10.5 %, p < 0.05) compared to MVCpre. The RMS value of VL muscle increased significantly after sprints (RMSpre vs. RMSpost: + 15 %, p < 0.05). Values of MF decreased significantly in both VL and VM after sprints. In conclusion, our results indicate that the increase in quadriceps EMG amplitude following high-intensity intermittent short sprints was not sufficient to maintain the required force output. The concomitant decrease in frequency components would suggest a modification in the pattern of muscle fiber recruitment, and a decrease in conduction velocity of active fibers.

References

  • 1 Balsom P, Seger J, Sjödin B, Ekblom B. Maximal-intensity intermittent exercise: effect of recovery duration.  Int J Sports Med. 1992;  13 528-533
  • 2 Basmajian J, De Luca C. Muscle fatigue and time-dependent parameters of the surface EMG signal. Basmajian J, De Luca C Muscles Alive: Their Functions Revealed by Electromyography. Baltimore, MD; Williams & Wilkins 1985: 201-222
  • 3 Bigland-Ritchie B. EMG/torque relationships and fatigue of humans voluntary contractions.  Exerc Sport Sci Rev. 1981;  9 75-117
  • 4 Bigland-Ritchie B, Donovan E, Roussos C. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts.  J Appl Physiol. 1981;  51 1300-1305
  • 5 Bishop D, Lawrence S, Spencer M. Predictors of repeated-sprints ability in elite females hockey players.  J Sci Med Sport. 2003;  6 199-209
  • 6 Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff P L. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans.  Am J Physiol. 1996;  34 E38-E43
  • 7 De Luca C. The use of surface electromyography in biomechanics.  J Appl Biomech. 1997;  13 135-163
  • 8 Durnin J, Rahaman M. The assessment of the amount of fat in the human body from measurements of skinfold thickness.  Br J Nutr. 1967;  21 681-689
  • 9 Enoka R, Stuart D. Neurobiology of muscle fatigue.  J Appl Physiol. 1992;  72 1631-1648
  • 10 Fitts R. Cellular mechanisms of muscle fatigue.  Physiol Rev. 1994;  74 49-94
  • 11 Gaitanos G, Williams C, Boobis L, Brooks S. Human muscle metabolism during intermittent maximal exercise.  J Appl Physiol. 1993;  75 712-719
  • 12 Gerdle B, Fugl-Meyer A. Is the mean power frequency shift of the EMG a selective indicator of fatigue of the fast twitch motor units?.  Acta Physiol Scand. 1992;  145 129-138
  • 13 Häkkinen K, Komi P. Electromyographic and mechanical characteristics of human muscle during fatigue under voluntary and reflex conditions.  Electroencephalogr Clin Neurophysiol. 1983;  55 436-444
  • 14 Hautier C, Arsac L, Deghdegh K, Souquet J, Belli A, Lacour J. Influence of fatigue on EMG/force ratio and cocontraction in cycling.  Med Sci Sports Exerc. 2000;  32 839-843
  • 15 Hunter A M, Clair Gibson St A, Lambert M, Dennis S, Mullany H, O'Malley M J, Vaughan C L, Kay D, Noakes T D. EMG amplitude in maximal and submaximal exercise is dependent on signal capture rate.  Int J Sports Med. 2003;  24 83-89
  • 16 Jones S, Passfield L. The dynamic calibration of bicycle power measuring cranks. Haake S The Engineering of Sport. Oxford; Blackwell Science 1998: 256-274
  • 17 Juel C. Muscle action potential propagation velocity changes during activity.  Muscle Nerve. 1988;  11 714-719
  • 18 Karlsson S, Yu L, Akay M. Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study.  IEEE Trans Biomed Engin. 2000;  47 228-238
  • 19 Kay D, Marino F, Cannon J, Clair Gibson St A, Lambert M, Noakes T. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions.  Eur J Appl Physiol. 2001;  84 115-121
  • 20 Kirsch R F, Rymer W Z. Neural compensation for muscular fatigue: evidence of significant force regulation in man.  J Neurophysiol. 1987;  57 1893-1910
  • 21 Komi P, Tesch P. EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man.  Eur J Appl Physiol. 1979;  42 41-50
  • 22 Kupa E, Roy S, Kandarian S, De Luca C. Effects of muscle fiber type and size on EMG median frequency and conduction velocity.  J Appl Physiol. 1995;  79 23-32
  • 23 Linnamo V, Bottas R, Komi P. Force and EMG power spectrum during and after eccentric and concentric fatigue.  J Electromyogr Kinesiol. 2000;  10 293-300
  • 24 Linssen W H, Jacobs M, Stegeman D F, Joosten E M, Moleman J. Muscle fatigue in McArdle's disease. Muscle fibre conduction velocity and surface EMG frequency spectrum during ischaemic exercise.  Brain. 1990;  113 1779-1793
  • 25 Merletti R, Lo Conte L. Surface EMG signal processing during isometric contractions.  J Electromyogr Kinesiol. 1997;  7 241-250
  • 26 Mendez-Villanueva A, Bishop D, Peter H. Changes in the power-fatigability relationship and neuromuscular activity during and following recovery from repeated-sprint exercise in man. Clermont-Ferrand, France; 9th Ann Congr ECSS 2004
  • 27 Michaut A, Pousson M, Miller G, Belleville J, Van Hoecke J. Maximal voluntary eccentric, isometric and concentric torque recovery following a concentric isokinetic exercise.  Int J Sports Med. 2003;  24 51-56
  • 28 Moritani T, Muro M, Kijima A, Gaffney F, Parsons D. Electromechanical changes during electrically induced and maximal voluntary contractions: surface and intramuscular EMG responses during sustained maximal voluntary contraction.  Exp Neurol. 1985;  88 484-499
  • 29 Moritani T, Muro M, Nagata A. Intramuscular and surface electromyogram changes during muscle fatigue.  J Appl Physiol. 1986;  60 1179-1185
  • 30 Moritani T, Takaishi T, Matsumoto T. Determination of maximal power output at neuromuscular fatigue threshold.  J Appl Physiol. 1993;  74 1729-1734
  • 31 Nordlund M M, Thorstensson A, Cresswell A G. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions.  J Appl Physiol. 2004;  96 218-225
  • 32 Nummela A, Vuorimaa T, Rusko H. Changes in force production, blood lactate and EMG activity in the 400 m sprint.  J Sports Sci. 1992;  10 217-228
  • 33 Orizio C, Baratta R, Zhou B H, Solomonow M, Veicsteinas A. Force and surface mechanomyogram frequency responses in cat gastrocnemius.  J Biomechanics. 2000;  33 427-433
  • 34 Suzuki H, Conwit R A, Stashuk D, Santarsiero L, Metter E J. Relationships between surface-detected EMG signals and motor unit activation.  Med Sci Sports Excer. 2002;  34 1509-1517
  • 35 Clair Gibson St A, Lambert M, Noakes T. Neural control of force output during maximal and submaximal exercise.  Sports Med. 2001;  31 637-650
  • 36 Taylor A, Bronks R, Smith P, Humphries B. Myoelectric evidence of peripheral muscle fatigue during exercise in severe hypoxia: some references to m. vastus lateralis myosin heavy chain composition.  Eur J Appl Physiol. 1997;  75 151-159
  • 37 Taylor J L, Allen G M, Butler J E, Gandevia S C. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors.  J Appl Physiol. 2000;  89 305-311

PhD F. Billaut

Laboratoire Ergonomie Sportive et Performance - EA 3162
Université du Sud Toulon-Var

Avenue de l'Université, BP 132

83957 La Garde Cedex

France

Phone: + 33(0)625446998

Fax: + 33 (0) 4 94 14 22 78

Email: billaut@univ-tln.fr