Int J Sports Med 2006; 27(1): 60-66
DOI: 10.1055/s-2005-837507
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Training on Lactate Kinetics Parameters and their Influence on Short High-Intensity Exercise Performance

L. Messonnier1 , H. Freund2 , C. Denis3 , L. Féasson3 , J.-R. Lacour4
  • 1Laboratory of Modelling Physical Activities, Department STAPS, University of Savoie, Le Bourget du Lac Cedex, France
  • 2Laboratory of Pharmacology and Physico-Chemistry of Cellular and Molecular Interactions, Faculty of Pharmacology - UMR CNRS 7034, Illkirch Cedex, France
  • 3Laboratory of Physiology, EA 3062 - PPEH Unit, Faculty of Medicine, University Jean Monnet, Saint-Etienne Cedex 2, France
  • 4Laboratory of Exercise Physiology - LBMH, Faculty of Medicine Lyon-Sud, Oullins Cedex, France
Further Information

Publication History

Accepted after revision: November 15, 2004

Publication Date:
09 May 2005 (online)

Abstract

The purpose of the present study was to relate the training-induced alterations in lactate kinetics parameters to the concomitant changes in time to exhaustion (Tlim) at a work rate corresponding to maximal oxygen uptake (Papeak). Eight subjects performed before and after training i) an incremental exercise up to exhaustion to determine Papeak, ii) a 5-min 90 % Papeak exercise followed by a 90-min passive recovery to determine an individual blood lactate recovery curve fitted to the bi-exponential time function: La(t) = La(0) + A1(1 - e-γ1 · t) + A2(1 - e-γ2 · t), and iii) a time to exhaustion at Papeak to determine Tlim. A biopsy of the vastus lateralis muscle was made before and after training. The training programme consisted in pedalling on a cycle ergometer 2 h a day, 6 days a week, for 4 weeks. Training-induced increases (p < 0.05) in Papeak, muscle capillary density, citrate synthase activity, γ2 that denotes the lactate removal ability (from 0.0547 ± 0.0038 to 0.0822 ± 0.0071 min-1) and Tlim (from 299 ± 23 to 486 ± 63 s), decreases (p < 0.05) in activities of lactate dehydrogenase (LDH) and muscle type of LDH, the phosphofructokinase/citrate synthase activities ratio and the estimated net amount of lactate released (NALR) during exercise recovery (from 66.5 ± 8.6 to 47.2 ± 11.1 mmol) were also observed. The improvement of Tlim with training was related to the increase in γ2 (r = 0.74, p = 0.0367) and to the decrease in NALR (r = 0.77, p = 0.0250). These results suggest that the post-training greater ability to remove lactate from the organism and reduced muscle lactate accumulation during exercise account for the concomitant improvement of the time to exhaustion during high-intensity exercise performed at the same relative work rate.

References

  • 1 Andrews M AW, Godt R E, Nosek T M. Influence of physiological L(+)-lactate concentrations on contractibility of skinned striated muscle fibers of rabbit.  J Appl Physiol. 1996;  80 2060-2065
  • 2 Bangsbo J, Johansen L, Graham T, Saltin B. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.  J Physiol. 1993;  462 115-133
  • 3 Bangsbo J, Graham T, Johansen L, Saltin B. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.  J Appl Physiol. 1994;  77 1890-1895
  • 4 Bergman B C, Wolfel E E, Butterfield G E, Lopaschuk G D, Casazza G A, Horning M A, Brooks G A. Active muscle and whole body lactate kinetics after endurance training in men.  J Appl Physiol. 1999;  87 1684-1696
  • 5 Billat V, Renoux J C, Pinoteau J, Petit B, Koralsztein J-P. Time to exhaustion at 100 % of velocity at V·O2max and modelling of the time-limit/velocity relationship in elite long-distance runners.  Eur J Appl Physiol. 1994;  69 271-273
  • 6 Bret C, Messonnier L, Nouck-Nouck J-M, Freund H, Dufour A-B, Lacour J-R. Differences in lactate exchange and removal abilities in athletes specialized in different track running events (100 to 1500 m).  Int J Sports Med. 2003;  24 108-113
  • 7 Demarle A P, Slawinski J J, Laffite L P, Bocquet V G, Koralsztein J-P, Billat V L. Decrease of O2 deficit is a potential factor in increased time to exhaustion after specific endurance training.  J Appl Physiol. 2001;  90 947-953
  • 8 Demarle A P, Heugas A M, Slawinski J J, Tricot V M, Koralsztein J-P, Billat V. Whichever the initial training status, any increase in velocity at lactate threshold appears as a major factor in improved time to exhaustion at the same severe velocity after training.  Arch Physiol Biochem. 2003;  111 167-176
  • 9 Favero T G, Zable A C, Colter D, Abramson J J. Lactate inhibits Ca2+-activated Ca2+-channel activity from skeletal muscle sarcoplasmic reticulum.  J Appl Physiol. 1997;  82 447-452
  • 10 Favier R J, Constable S H, Chen M, Holloszy J O. Endurance exercise training reduces lactate production.  J Appl Physiol. 1986;  61 885-889
  • 11 Fitts R H. Cellular mechanisms of muscle fatigue.  Physiol Rev. 1994;  74 49-94
  • 12 Freund H, Zouloumian P. Lactate after exercise in man.  Eur J Appl Physiol. 1981;  46 121-176
  • 13 Freund H, Zouloumian P, Oyono-Enguéllé S, Lampert E. Lactate after maximal exercise in man.  Med Sport Sci. 1984;  17 9-24
  • 14 Gollnick P D, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training.  Clin Physiol. 1982;  2 1-12
  • 15 Hermansen L, Osnes J B. Blood and muscle pH after maximal exercise in man.  J Appl Physiol. 1972;  32 304-308
  • 16 Hill D W, Rowell A L. Significance of time to exhaustion during exercise at the velocity associated with V·O2max.  Eur J Appl Physiol. 1996;  72 383-386
  • 17 Hogan M C, Welch D C. Effect of varied lactate levels on bicycle performance.  J Appl Physiol. 1984;  57 507-513
  • 18 Hogan M C, Gladden L B, Kurdak S S, Poole D C. Increased (lactate) in working dog muscle reduces tension development independent of pH.  Med Sci Sports Exerc. 1995;  27 371-377
  • 19 Jacobs I, Sjödin B, Schéle R. A single blood lactate determination as an indicator of cycle ergometer endurance capacity.  Eur J Appl Physiol. 1983;  50 355-364
  • 20 Juel C, Bangsbo J, Graham T, Johansen L, Saltin B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise.  Acta Physiol Scand. 1990;  150 147-159
  • 21 MacRae H SH, Dennis S C, Bosch A N, Noakes T. Effects of training on lactate production and removal during progressive exercise in humans.  J Appl Physiol. 1992;  72 1649-1656
  • 22 Messonnier L, Freund H, Denis C, Dormois D, Dufour A-B, Lacour J-R. Time to exhaustion at V·O2max is related to the lactate exchange and removal abilities.  Int J Sports Med. 2002;  23 433-438
  • 23 Messonnier L, Geyssant A, Hintzy F, Lacour J-R. Effects of training in normoxia and normobaric hypoxia on time-to-exhaustion at V·O2max.  Eur J Appl Physiol. 2004;  92 470-476
  • 24 Metzger J M, Fitts R H. Role of intracellular pH in muscle fatigue.  J Appl Physiol. 1987;  62 1392-1397
  • 25 Oyono-Enguéllé S, Marbach J, Heitz A, Ott C, Gartner M, Pape A, Vollmer J-C, Freund H. Lactate removal ability and graded exercise in humans.  J Appl Physiol. 1990;  68 905-911
  • 26 Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap A P, Bangsbo J. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.  Am J Physiol. 1999;  276 255-261
  • 27 Sahlin K. Metabolic factors in fatigue.  Sports Med. 1992;  13 99-107
  • 28 Saltin B, Gollnick P D. Skeletal muscle adaptability: significance for metabolism and performance. Peachey L, Adrian R, Geiger R, Geiger S Handbook of Physiology. Section 10. Baltimore, MA; Williams and Wilkins Company 1983: 555-631
  • 29 Westerblad H, Lee J A, Lannergren J, Allen D G. Cellular mechanisms of fatigue in skeletal muscle.  Am J Physiol. 1991;  261 195-209

L. Messonnier

Laboratory of Modelling Physical Activities, Department STAPS, University of Savoie

Campus universitaire

73376 Le Bourget du Lac Cedex

France

Phone: + 33479758147

Fax: + 33 4 79 75 81 48

Email: laurent.messonnier@univ-savoie.fr