Abstract
The glucagon-like peptide-1 (GLP-1) receptor is expressed on α-cells, though its functional significance is unknown. The endogenous β-cell GLP-1 receptor is coupled to adenylyl cyclase, cell depolarization, activation of voltage-dependent Ca2+ channels (VDCC) and extracellular Ca2+ influx ([Lu et al. 1993 b ]). In contrast, the signaling pathways of the GLP-1 receptor in α-cells are poorly understood. To determine the signaling mechanisms of the α-cell GLP-1 receptor, we established a stable pancreatic islet α-cell line expressing the recombinant rat GLP-1 receptor (INR1-SF2), using INRl-G9 cells. These INRl-G9 cells do not express endogenous GLP-1 receptor. In INR1-SF2 cells, GLP-1 bound to the recombinant receptor (Kd = 0.9 nM) and increased cAMP (ED50 = 0.6 nM). GLP-1 increased the free cytosolic Ca2+ ([Ca2+ ]i ) (ED50 = 50 nM) by release from intracellular stores, but did not affect INR1-SF2 cell phosphoinositol turnover. Despite expressing VDCC, the INR1-SF2 cells were not depolarized by GLP-1, even in the presence of glucose. This contrasts with the depolarizing action of GLP-1 in β-cells in the presence of glucose ([Lu et al., 1993 b ]).
This study establishes that a single GLP-1 receptor species can mediate the effects of GLP-1 through multiple signaling pathways, including the adenylyl cyclase system and intracellular Ca2+ release, in an α-cell type. Furthermore, since GLP-1 is unable to cause cellular depolarization or activate VDCC in INR1-SF2 cells, these data suggest that glucose-induced membrane depolarization may be crucial for GLP-1 to further activate VDCC and potentiate glucose-stimulated insulin release in β-cells. Finally this study describes a cell line that can be used as a model system for evaluation of GLP-1 signaling in α-cells.
Key words
GLP-1 receptor - alpha cells - INR1-G9 cells - intracellular Ca2+ release
References
1
Abou-Samra A-B, Juppner H, Force T, Freeman M, Kong X, Schipani E, Urena P, Richards J, Bonventre J, Potts J, Kronenberg H, Segre G.
Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: A single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium.
Proc National Acad Sciences USA.
1992;
89
2732-2736
2
Amatruda T, Gerard N, Gerard C, MI S.
Specific interactions of chemoattractant factor receptors with G-proteins.
J Biol Chem.
1993;
14
10139-10144
3
Berridge M.
Inositol trisphosphate and calcium signaling.
Nature.
1993;
361
315-325
4
Canonico P, Cronin M, Thorner M, Macleod R.
Human pancreatic GRF stimulates phosphatidylinositol-labeling in cultured anterior pituitary cells.
Am J Physiol.
1983;
245
E587-590
5
Dillon J S, Tanizawa Y, Wheeler M B, Leng X H, Ligon B B, Rabin D U, Yoo-Warren H, Permutt M A, Boyd A E.
Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor.
Endocrinology.
1993;
133
1907-1910
6
Ding W G, Renstrom E, Rorsman P, Buschard K, Gromada J.
Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide stimulate calcium-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism.
Diabetes.
1997;
46
792-800
7
Drucker D J, Philippe J, Mojsov S.
Proglucagon gene expression and posttranslational processing in a hamster islet cell line.
Endocrinology.
1988;
123
1861-1867
8
Eddlestone G, Oldham S, Lipson L, Premdas F, Biegelman P.
Electrical activity, cAMP concentration, and insulin release in mouse pancreatic islets of Langerhans.
Am J Physiol.
1985;
248
C145-153
9
Exton J.
Cell signaling through guanine nucleotide binding regulatory proteins (G proteins) and phospholipases.
Eur J Biochem.
1997;
243
10-20
10
Fehmann H C, Habener J F.
Homologous desensitization of the insulinotropic glucagon-like peptide-1 (7 - 37) receptor on insulinoma (HIT-T15) cells.
Endocrinology.
1991;
128
2880-2888
11
Goke R, Conlon J.
Receptors for glucagon-like peptide-1(7 - 36) amide on rat insulinoma-derived cells.
J Endocrinol.
1988;
116
357-362
12
Gopel S O, Kanno T, Barg S, Weng X G, Gromada J, Rorsman P.
Regulation of glucagon release in mouse α-cells by kATP channels and inactivation of TTX-sensitive Na+ channels.
J Physiol.
2000;
528
509-520
13
Graber M, Bockenstedt L, Weiss A.
Signaling via the inositol phospholipid pathway by T cell antigen receptor is limited by receptor number.
Journal of Immunology.
1991;
146
2935-2943
14
Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff B S, Rorsman P.
Glucagon-like peptide 1 increases cytoplasmic calcium in insulin-secreting beta tc3-cells by enhancement of intracellular calcium mobilization.
Diabetes.
1995;
44
767-774
15
Gutniak M, Orskov C, Holst J J, Ahren B, Efendic S.
Antidiabetogenic effect of glucagon-like peptide-1(7 - 36) amide in normal subjects and patients with diabetes mellitus.
New Engl J Med.
1992;
326
1316-1322
16
Gutniak M K, Juntti-Berggren L, Hellstrom P M, Guenifi A, Holst J J, Efendic S.
Glucagon-like peptide 1 enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas.
Diabetes Care.
1996;
19
857-863
17
Heller R S, Aponte G W.
Intra-islet regulation of hormone secretion by glucagon-like peptide-1-(7 - 36) amide.
Am J Physiol.
1995;
269
G852-860
18
Heller R S, Kieffer T J, Habener J F.
Insulinotropic glucagon-like peptide 1 receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas.
Diabetes.
1997;
46
785-791
19
Henquin J, Meissner H.
The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic β-cells: Studies with forskolin.
Endocrinology.
1984;
115
1125-1134
20
Holz G G, Leech C A, Heller R S, Castonguay M, Habener J F.
cAMP-dependent mobilization of intracellular calcium stores by activation of ryanodine receptors in pancreatic beta-cells. A calcium signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7 - 37).
J Biol Chem.
1999;
274
14147-14156
21
Holz G G, Kuhtreiber W M, Habener J F.
Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7 - 37).
Nature.
1993;
361
362-365
22
Holz G H, Kuhtreiber W M, Habener J F.
Induction of glucose competence in pancreatic beta cells by glucagon-like peptide-1(7 - 37).
Transactions of the Association of American Physicians.
1992;
105
260-267
23
Kanse S M, Kreymann B, Ghatei M A, Bloom S R.
Identification and characterization of glucagon-like peptide-1 7 - 36 amide-binding sites in the rat brain and lung.
FEBS Letters.
1988;
241
209-212
24
Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S.
Glucagonostatic and insulinotropic action of glucagon like peptide 1-(7 - 36)-amide.
Diabetes.
1989;
38
902-905
25
Ling Z, Wu D, Zambre Y, Flamez D, Drucker D J, Pipeleers D G, Schuit F C.
Glucagon-like peptide 1 receptor signaling influences topography of islet cells in mice.
Virchows Archiv.
2001;
438
382-387
26
Login I, Judd A, Macleod R.
Association of 45 Ca2+ mobilization with stimulation of growth hormone release by GH-releasing factor in dispersed normal male pituitary cells.
Endocrinology.
1986;
118
239-243
27
Lu M, Soltoff S, Yaney G, Boyd A E.
The mechanisms underlying the glucose dependence of arginine vasopressin induced insulin secretion in β cells.
Endocrinology.
1993 a;
132
2141-2148
28
Lu M, Wheeler M B, Leng X H, Boyd A E.
The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide 1 (7 - 37).
Endocrinology.
1993 b;
132
94-100
29
Marie J C, Rosselin G, Skoglund G.
Pancreatic beta-cell receptors and g proteins coupled to adenylyl cyclase.
Ann New York Acad Sciences.
1996;
805
122-132
30
Moens K, Heimberg H, Flamez D, Huypens P, Quartier E, Ling Z, Pipeleers D, Gremlich S, Thorens B, Schuit F.
Expression and functional activity of glucagon, glucagon-like peptide 1, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells.
Diabetes.
1996;
45
257-261
31
Montrose-Rafizadeh C, Avdonin P, Garant M J, Rodgers B D, Kole S, Yang H, Levine M A, Schwindinger W, Bernier M.
Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells.
Endocrinology.
1999;
140
1132-1140
32
Munson P, Rodbard D.
Ligand: A versatile computerized approach for characterization of ligand binding systems.
Analytical Biochemistry.
1980;
107
220-239
33
Nelson T, Gaines K, Rajan A, Berg M, Boyd A E.
Increased cytosolic calcium: A signal for sulfonylurea-stimulated insulin release from beta cells.
J Biol Chem.
1987;
262
2608-2612
34
Nichols C, Lederer W.
The mechanism of kATP channel inhibition by ATP.
J General Physiol.
1991;
94
1095-1098
35
Offermanns S, Lida-Klein A, Segre G, Mi S.
Gα q family members couple parathyroid hormone/PTH related peptide and calcitonin receptors to phospholipase C in COS-7 cells.
Mol Endocrinol.
1996;
10
566-574
36
Orskov C, Poulsen S S.
Glucagon like peptide-1-(7 - 36)-amide receptors only in islets of Langerhans. Autoradiographic survey of extracerebral tissues in rats.
Diabetes.
1991;
40
1292-1296
37
Rajan A, Hill R, Boyd A E.
Effect of rise in cAMP levels on Ca2+ influx through voltage dependent Ca2+ channels in HIT cells.
Diabetes.
1989;
38
874-880
38
Ribalet B, Ciani S, Eddlestone G.
ATP mediates both activation and inhibition of kATP channel activity via cAMP dependent protein kinase in insulin secreting cell lines.
J General Physiol.
1989;
94
693-796
39
Richter G, Goke R, Goke B, Schmidt H, Arnold R.
Characterization of glucagon-like peptide-1(7 - 36)amide receptors of rat lung membranes by covalent cross-linking.
FEBS Letters.
1991;
280
247-250
40
Sato M, Kataoka R, Dingus J, Wilcox M, Hildebrandt J, Lanier S.
Factors determining specificity of signal transduction by G-protein coupled receptors.
J Biol Chem.
1995;
270
15269-15276
41
Satoh F, Beak S A, Small C J, Falzon M, Ghatei M A, Bloom S R, Smith D M.
Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: Lack of coupling to either stimulation or inhibition of adenylyl cyclase.
Endocrinology.
2000;
141
1301-1309
42
Schirra J, Sturm K, Leicht P, Arnold R, Goke B, Katschinski M.
Exendin(9 - 39)amide is an antagonist of glucagon-like peptide-1(7 - 36)amide in humans.
J Clin Invest.
1998;
101
1421-1430
43
Sculptoreanu A, Scheuer T, Catterall W.
Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase.
Nature.
1993;
364
240-243
44
Takaki R, Ono J, Nakamura M, Yokogawa Y, Kumae S, Hiraoka T, Yamaguchi K, Hamaguchi K, Uchida S.
Isolation of glucagon-secreting cell lines by cloning insulinoma cells.
In Vitro Cellular and Developmental Biology.
1986;
22
120-126
45
Takhar S, Gyomorey S, Su R C, Mathi S K, Li X, Wheeler M B.
The third cytoplasmic domain of the GLP-1(7 - 36 amide) receptor is required for coupling to the adenylyl cyclase system.
Endocrinology.
1996;
137
2175-2178
46
Tucker J D, Dhanvantari S, Brubaker P L.
Proglucagon processing in islet and intestinal cell lines.
Regulatory Peptides.
1996;
62
29-35
47
Uttenthal L O, Blazquez E.
Characterization of high-affinity receptors for truncated glucagon-like peptide-1 in rat gastric glands.
FEBS Letters.
1990;
262
139-141
48
Wang X, Cahill C M, Pineyro M A, Zhou J, Doyle M E, Egan J M.
Glucagon-like peptide-1 regulates the beta cell transcription factor, PDX-1, in insulinoma cells.
Endocrinology.
1999;
140
4904-4907
49
Wheeler M, Nishitani J, Buchan A, Kopin A, Chey W, Chang T-M, Leiter A.
Identification of a transcriptional enhancer important for enteroendocrine and pancreatic islet cell-specific expression of the secretin gene.
Mol Cell Biol.
1992;
12
3531-3539
50
Wheeler M B, Lu M, Dillon J S, Leng X H, Chen C, Boyd A E.
Functional expression of the rat glucagon-like peptide-1 receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C.
Endocrinology.
1993;
133
57-62
51
Widmann C, Burki E, Dolci W, Thorens B.
Signal transduction by the cloned glucagon-like peptide-1 receptor: Comparison with signaling by the endogenous receptors of beta cell lines.
Mol Pharmacol.
1994;
45
1029-1035
52
Winicov I, Gershengorn M.
Receptor density determines secretory response patterns mediated by inositol lipid derived second messengers.
J Biol Chem.
1989;
264
9438-9443
53
Xu G, Stoffers D A, Habener J F, Bonner-Weir S.
Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats.
Diabetes.
1999;
48
2270-2276
54
Yang H, Egan J M, Wang Y, Moyes C D, Roth J, Montrose M H, Montrose-Rafizadeh C.
GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor.
Am J Physiol.
1998;
275
C675-683
55 Zar J. Biostatistical Analysis. New Jersey; Prentice-Hall 1984
56
Zhou J, Wang X, Pineyro M A, Egan J M.
Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells.
Diabetes.
1999;
48
2358-2366
Joseph Dillon
Division of Endocrinology Room 3E10 VAMC University of Iowa
Iowa City
IA 52246 · USA
Phone: + 3193380581 ext. 7640
Fax: + 31 93 39 70 25
Email: joseph-dillon@uiowa.edu