Rofo 2005; 177(2): 173-178
DOI: 10.1055/s-2005-857865
Rapid Communication

© Georg Thieme Verlag KG Stuttgart · New York

Inversion Prepared Coronary MR Angiography: Direct Visualization of Coronary Blood Flow[*]

MR-Koronarangiographie mit Inversionspuls zur Darstellung des koronaren BlutflussesM. Katoh1, 2 , E. Spuentrup2 , M. Stuber3 , A. Buecker2 , W. J. Manning1 , R. W. Günther2 , R. M. Botnar1
  • 1Department of Medicine (Cardiovascular Division) Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
  • 2Department of Diagnostic Radiology, University Hospital Aachen, University of Technology (RWTH), Aachen, Germany
  • 3Department of Radiology, Division of MRI Research, Johns Hopkins University Medical School, Baltimore, MD, USA
Further Information

Publication History

Publication Date:
24 January 2005 (online)

Zusammenfassung

Ziel: Implementierung einer Bright-Blood MR-Koronarangiographie-Sequenz in Kombination mit einem schichtselektiven Inversionspuls zur Darstellung des koronaren Blutflusses. Material: Bei acht gesunden Probanden wurde das rechte Koronargefäßsystem mit einem 1,5-Tesla MR-Tomographen (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) mittels einer navigatorgesteuerten EKG-getriggerten 3D-Steady-State Free-Frecession (SSFP)-Sequenz mit radialer k-Raum-Abtastung untersucht. Die gleiche Sequenz wurde mit und ohne schichtselektiven Inversionspuls durchgeführt, der entlang der Koronararterie, jedoch orthogonal zur Bildebene und unter Ausschluss der Aorta geplant wurde. Bei beiden Sequenzen wurden das Signal (SRV)- und Kontrast-zu-Rausch-Verhältnis (KRV) aus Signalintensitätsmessungen im Gefäßlumen, epikardialen Fettgewebe, Blut im rechten Ventrikel und in der extrakorporalen Luft ermittelt. Ferner wurden die dargestellte Gefäßlänge und die Kantenschärfe gemessen. Ergebnisse: Die Verwendung eines selektiven Inversionspulses ermöglicht eine direkte Darstellung des koronaren Blutflusses. Dabei wird exakt die Länge des Gefäßes dargestellt, die das Blut während eines Herzzyklus zurücklegt. Die SSFP-Sequenz mit selektivem Inversionspuls ergab ein höheres KRV zwischen koronarem und rechtsventrikulärem Blut und eine bessere Darstellung der Gefäßkanten. Das SRV der Koronararterien und KRV zwischen Koronararterie und epikardialem Fettgewebe war in beiden Sequenzen vergleichbar. Schlussfolgerung: Die Kombination einer 3D SSFP-Sequenz mit einem schichtselektiven Inversionspuls ermöglicht die direkte Darstellung des koronaren Blutflusses und verstärkt den Kontrast zwischen den Koronararterien und dem Blut im rechten Ventrikel.

Abstract

Purpose: Visualization of coronary blood flow by means of a slice-selective inversion pre-pulse in concert with bright-blood coronary MRA. Materials and Methods: Coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA) was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered 3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging was performed with and without a slice-selective inversion pre-pulse, which was positioned along the main axis of the coronary artery but perpendicular to the imaging volume. Objective image quality parameters such as SNR, CNR, maximal visible vessel length, and vessel border definition were analyzed. Results: In contrast to conventional bright-blood 3D coronary MRA, the selective inversion pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between the RCA and right ventricular blood pool was increased and the vessels had a tendency towards better delineation. Blood SNR and CNR between right coronary blood and epicardial fat were comparable in both sequences. Conclusion: The combination of a free-breathing navigator-gated and cardiac-triggered 3D SSFP sequence with a slice-selective inversion pre-pulse allows for direct and directional visualization of coronary blood flow with the additional benefit of improved contrast between coronary and right ventricular blood pool.

1 This work is supported in part by a Biomedical Engineering Grant from the Whitaker Foundation (RG-02-0745), a grant from the Donald W. Reynolds Foundation and by the National Institutes of Health (HL61912).

1 Dr. Stuber is compensated as a consultant by Philips Medical Systems NL, the manufacturer of equipment described in this presentation. The terms of this arrangement have been approved by the Johns Hopkins University in accordance with its conflict of interest policies.

References

  • 1 Kim W Y, Danias P G, Stuber M. et al . Coronary magnetic resonance angiography for the detection of coronary stenoses.  N Engl J Med. 2001;  345 1863-1869
  • 2 Deshpande V S, Shea S M, Laub G. et al . 3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries.  Magn Reson Med. 2001;  46 494-502
  • 3 Spuentrup E, Bornert P, Botnar R M. et al . Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP) coronary magnetic resonance angiography.  Invest Radiol. 2002;  37 637-642
  • 4 Barkhausen J, Hunold P, Jochims M. et al . [Comparison of gradient-echo and steady state free precession sequences for 3D-navigator MR angiography of coronary arteries].  Fortschr Röntgenstr. 2002;  174 725-730
  • 5 Duerk J L, Lewin J S, Wendt M. et al . Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at.2 T.  J Magn Reson Imaging. 1998;  8 203-208
  • 6 Spuentrup E, Katoh M, Buecker A. et al . Free-breathing 3D steady-state free-precession coronary MR angiography with radial k-space sampling: Comparison with cartesian k-space sampling and cartesian gradient echo coronary MR angiography - Pilot study.  Radiology. 2004;  231 581-586
  • 7 Wang S J, Hu B S, Macovski A. et al . Coronary angiography using fast selective inversion recovery.  Magn Reson Med. 1991;  18 417-423
  • 8 Stuber M, Bornert P, Spuentrup E. et al . Selective three-dimensional visualization of the coronary arterial lumen using arterial spin tagging.  Magn Reson Med. 2002;  47 322-329
  • 9 Katoh M, Stuber M, Bucker A. et al . Spin Labeling Coronary MR Angiography with Steady-State Free-Precession (SSFP) and Radial k-Space Sampling - Initial Results in Healthy Volunteers.  Radiology. (in press)
  • 10 Stuber M, Botnar R M, Danias P G. et al . Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography.  J Am Coll Cardiol. 1999;  34 524-531
  • 11 Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques.  Eur Radiol. 2003;  13 2409-2418
  • 12 Stuber M, Botnar R M, Danias P G. et al . Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations.  Radiology. 1999;  212 579-587
  • 13 Etienne A, Botnar R M, Van Muiswinkel A M. et al . “Soap-Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms.  Magn Reson Med. 2002;  48 658-666
  • 14 Botnar R M, Stuber M, Danias P G. et al . Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA.  Circulation. 1999;  99 3139-3148
  • 15 Keegan J, Gatehouse P D, John A S. et al . Breath-hold signal-loss sequence for the qualitative assessment of flow disturbances in cardiovascular MR.  J Magn Reson Imaging. 2003;  18 496-501
  • 16 Fayad Z A, Fuster V, Fallon J T. et al . Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging.  Circulation. 2000;  102 506-510
  • 17 Botnar R M, Stuber M, Kissinger K V. et al . Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging.  Circulation. 2000;  102 2582-2587
  • 18 Spuentrup E, Katoh M, Stuber M. et al . Coronary MR Imaging Using Free-Breathing 3D Steady-State Free Precession with Radial k-space Sampling.  Fortschr Röntgenstr. 2003;  175 1330-1334

1 This work is supported in part by a Biomedical Engineering Grant from the Whitaker Foundation (RG-02-0745), a grant from the Donald W. Reynolds Foundation and by the National Institutes of Health (HL61912).

1 Dr. Stuber is compensated as a consultant by Philips Medical Systems NL, the manufacturer of equipment described in this presentation. The terms of this arrangement have been approved by the Johns Hopkins University in accordance with its conflict of interest policies.

Marcus Katoh, MD

Department of Diagnostic Radiology, University Hospital, University of Technology (RWTH)

Pauwelsstraße 30

52057 Aachen

Germany

Phone: ++ 49/2 41/80-8 83 32

Fax: ++ 49/2 41/80-8 24 11

Email: katoh@rad.rwth-aachen.de