Zusammenfassung
Ziel: Ein großes Problem der navigatorgestützten 3D MR-Koronarangiographie (MRCA) ist die niedrige Navigatoreffizienz bei Patienten mit unregelmäßigem Atmungsmuster. 3D MAG ist eine neue prospektive adaptive Navigatortechnik, die sich in Echtzeit Änderungen der endexspiratorischen Zwerchfellposition anpasst. Das Ziel dieser Studie war, den Einfluss von 3D MAG auf die MRCA zu untersuchen. Material und Methoden: 48 Patienten mit V.a. KHK wurden an einem 1,5-T-Gerät mit einer EKG-getriggerten Gradienten-Echo-Sequenz mit Echtzeit-Gating der Zwerchfellbewegung mit 3D MAG und Standardnavigator untersucht. Die MRCAs wurden nach folgenden Kriterien evaluiert und verglichen: 1. Navigatoreffizienz und Messzeit, 2. Länge der visualisierten Koronarsegmente, 3. Beurteilung der Bildqualität (4-Punkte-Skala: 1: nicht diagnostisch, 5: sehr gut), 4. Detektion von Gefäßstenosen > 50 %. Ergebnisse: Der Einsatz von 3D MAG bewirkte eine signifikante Verbesserung der Navigatoreffizienz um 21 % und Reduktion der Messzeit um 18 % im Vergleich zur Standardnavigatortechnik (p < 0,05). Es gab keine signifikanten Unterschiede in der Länge der visualisierten Koronarsegmente, der Bildqualität (3,59 ± 0,65 vs. 3,54 ± 0,76) und der Stenosendetektion (Sensitivität: 83 % vs. 83 % und Spezifität: 89 % vs. 88 %) zwischen den MRCA mit und ohne Verwendung von 3D MAG (p > 0,05). Schlussfolgerung: 3D MAG verkürzt bei der MRCA im Vergleich zur Standardnavigatortechnik signifikant die Messzeit (p < 0,05) bei erhaltener Bildqualität und diagnostischer Aussagekraft bezüglich des Nachweises von Koronararterienstenosen.
Abstract
Purpose: A major problem of free breathing coronary MR angiography (MRA) with respiratory navigator gating is low navigator efficiency and prolonged scan time due to irregular breathing patterns. 3D motion adapted gating (MAG) is a new adaptive navigator technique, which adapts in real time to changes of the end-expiratory position of diaphragm. This study evaluates the influence of 3D MAG on coronary MRA. Methods and Materials: In 3D MAG, two additional gating windows are grouped around the conventional window. Additionally, each gating window is divided into three bands assigned to different portions of the k-space. The scan is terminated when three consecutive bands are filled and one complete image data set is collected. Free breathing navigator-gated coronary MRA was performed on 48 patients with suspected coronary artery disease. In random order, each patient underwent an ECG-gated, a 3D segmented k-space gradient echo sequence using 3D MAG and a conventional navigator technique. The coronary MRA was evaluated and compared using the following parameters: 1. navigator efficiency and scan time; 2. visualized coronary artery length; 3. qualitative assessment of image quality; and 4. detection of stenoses > 50 % in comparison with catheter angiography. Results: Coronary MRA with 3D MAG had a significant increase in the average navigator efficiency (46 % ± 12 % vs. 38 % ± 12 %, p < 0.05), resulting in a significantly shorter scan time (mean: 18 % ± 4 %, p < 0.05) for coronary MRA with 3D MAG compared to conventional navigator technique. Scans with and without 3D MAG had no significant differences in the continuously visualized vessel lengths, in the assessed image quality and in the sensitivity and specificity (83 % and 89 % vs. 83 % and 88 %, p > 0.05) of detecting coronary artery stenoses > 50 %. Conclusion: The 3D MAG technique improves the navigator efficiency and significantly (p < 0.05) shortens the scan time of navigator gated coronary MRA while maintaining image quality and diagnostic accuracy in the detection of coronary artery stenoses.
Key words
Magnetic resonance (MR) - coronary MR angiography - coronary vessels - coronary artery disease - navigator technique
Literatur
1
Paulin S, Schulthess G K von, Fossel E. et al .
MR imaging of the aortic root and proximal coronary arteries.
Am J Roentgenol.
1987;
148
665-670
2
Sandstede J, Pabst T, Kenn W. et al .
Dreidimensionale MR-Koronarangiographie in Navigator-Technik zur Primärdiagnostik der koronaren Herzerkrankung: Vergleich zur konventionellen Koronarangiographie.
Fortschr Röntgenstr.
1999;
170
269-274
3
Cho Z H, Mun C W, Friedenberg R M.
NMR angiography of coronary vessels with 2-D planar image scanning.
Magn Reson Med.
1991;
20
134-143
4
Manning W J, Li W, Edelman R R.
A preliminary report comparing magnetic resonance coronary angiography with conventional angiography.
N Engl J Med.
1993;
328
828-832
5
Pennell D J, Keegan J. et al .
Magnetic resonance imaging of coronary arteries: technique and preliminary results.
Br Heart J.
1993;
70
315-26
6
Duerinckx A J, Urman M K.
Two-dimensional coronary MR angiography: analysis of initial clinical results.
Radiology.
1994;
193
731-732
7
Edelman R R, Manning W J, Burstein D. et al .
Coronary arteries: breath-hold MR angiography.
Radiology.
1991;
181
641-643
8
Sandstede J J, Pabst T, Beer M. et al .
Three-dimensional MR coronary angiography using the navigator technique compared with conventional coronary angiography.
Am J Roentgenol.
1999;
172
135-139
9
Stuber M, Botnar R, Danias P G. et al .
Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: Comparison of navigator locations.
Radiology.
1999;
212
579-587
10
Stuber M, Botnar R M, Danias P G. et al .
Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography.
J Am Coll Cardiol.
1999;
34 (2)
524-531
11
Spuentrup E, Katoh M, Stuber M. et al .
MR-Koronarangiographie während freier Atmung mit 3D Steady-State Free Precession und radialer k-Raum Abtastung.
Fortschr Röntgenstr.
2003;
175
1330-1334
12
Sommer T, Hofer U, Hackenbroch M. et al .
Hochauflösende 3D-MR-Koronarangiographie in Echt-Zeit-Navigatortechnik: Ergebnisse aus 107 Patientenuntersuchungen.
Fortschr Röntgenstr.
2002;
174 (4)
459-466
13
Kim W Y, Danias P G, Stuber M. et al .
Coronary magnetic resonance angiography for the detection of coronary stenoses.
N Engl J Med.
2001;
345 (26)
1863-1189
14
Maintz D, Aepfelbacher F C, Kissinger K V. et al .
Coronary MR Angiography: Comparison of Quantitative and Qualitative Data from Four Techniques.
AJR Am J Roentgenol.
2004;
182 (2)
515-521
15
Barkhausen J, Hunold P, Jochims M. et al .
Vergleich von Gradienten-Echo und steady state free precession Sequenzen zur 3D-Navigator-MR-Koronarangiographie.
Fortschr Röntgenstr.
2002;
174 (6)
725-730
16
Fischer S E, Wickline S A, Lorenz C H.
Novel real-time R-wave detection algorithm based on the vektorcardiogram for accurate gated magnetic resonance acquisitions.
Magn Reson Med.
1993;
30
191-200
17
Botnar R M, Stuber M, Danias P G. et al .
Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA.
Circulation.
1999;
99 (24)
3139-3348
18
Brittain J H, Hu B S, Wright G A. et al .
Coronary angiography with magnetization-prepared T2 contrast.
Magn Reson Med.
1995;
33
689-696
19
Harrison R, Bronskill M J, Henkelmann R M.
Magnetization transfer and T2-Relaxation components in tissue.
Magn Reson Med.
1995;
33
490-496
20
Hofman M B, Wickline S A, Lorenz C H.
Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification.
J Magn Reson Imaging.
1998;
8 (3)
568-576
21
Liu Y L. et al .
A monitoring feedback and triggering system for reprodusible breath-hold MR-imaging.
Magn Reson Med.
1993;
30 (4)
507-511
22
Taylor A m, Jhooti P. et al .
MR navigator-echo monitoring of temporal changes in diaphragmatic position: implications for MR coronary angiography.
J Magn Reson Imaging.
1997;
7
629-636
23
Taylor A m, Jhooti P. et al .
Automated monitoring of diaphragmatic end-expiratory position for real-time navigator echo MR coronary angiography.
J Magn Reson Imaging.
1999;
9
395-401
24
Wang Y, Riederer S J, Ehman R L.
Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging.
Magn Reson Med.
1995;
33 (5)
713-779
25
Jhooti P, Gatehouse P D. et al .
Phase Ordering With Automatic Window Selection (PAWS): A novel Motion-Resistant Technique for 3D Coronary Imaging.
Magn Reson Med.
2000;
43
470-480
26
Taylor A M. et al .
Differences between normal subjects and patients with coronary artery disease for three different MR coronary angiography respiratory suppression techniques.
J Magn Reson Imaging.
1999;
9
786-793
27
Li D, Kaushikkar S, Haacke E M. et al .
Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating.
Radiology.
1996;
201
857-863
28
Weiger M. et al .
Motion adapted Gating based on k-space weighting for reduction of respiratory motion artifacts.
Mag Reson Med.
1997;
38
328-333
29
Sinkus R, Bornert P.
Motion Pattern adapted real-time respiratory gating.
Magn Reson Med.
1999;
41
148-155
30
Weber C, Steiner P, Sinkus R. et al .
Correlation of 3D MR coronary angiography with selective coronary angiography: feasibility of the motion-adapted gating technique.
Eur Radiol.
2002;
12
718-726
31
Plein S, Jones T R, Ridgway J P. et al .
Three dimensional coronary MR angiography performed with subject-specific cardiac acquisition windows and motion adapted respiratory gating.
AJR.
2003;
180 (2)
505-512
Dr. M. Hackenbroch
Universität Bonn, Radiologische Klinik
Sigmund-Freud-Str. 25
53127 Bonn
eMail: matthias.hackenbroch@ukb.uni-bonn.de