Rofo 2005; 177(7): 975-985
DOI: 10.1055/s-2005-858269
Experimentelle Radiologie

© Georg Thieme Verlag KG Stuttgart · New York

Homogene Strain-Analyse im Vergleich zur Wanddickenzunahme für die MR-tomographische Beurteilung der regionalen Myokardfunktion

Comparison of Homogenous Strain-Analysis with Wall Thickening for the Assessment of Regional Myocardial FunctionD. Thomas1 , S. Pickup1 , R. Zhou1 , J. Glickson1 , V. A. Ferrari1, 2
  • 1Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
  • 2Department of Medicine, Division of Cardiology, University of Pennsylvania
Further Information

Publication History

Publication Date:
22 June 2005 (online)

Zusammenfassung

Ziel: Vergleich der Strain-Analyse mit der Analyse der Wanddickenzunahme (WDZ) zur Differenzierung der Infarktzone sowie des angrenzenden und entfernten Myokards in einem Ratteninfarktmodell. Material und Methoden: 3 normale (NL) und 10 Tiere mit induziertem Myokardinfarkt wurden an einem 4,7-T-Scanner untersucht. Gradienten-Echo- und SPAMM-Tagging-Cine-Sequenzen wurden in der kurzen Herzachse auf 3 verschiedenen Höhen des linken Ventrikels (LV) akquiriert. Eine homogene Strain-Analyse (Haupt-Strains λ1 und λ2, Verschiebung V, Winkel β) und eine Analyse der WDZ (mm- und %-WDZ) wurden für die Schichten, auf denen der Infarkt abgrenzbar war, durchgeführt. Die regionale Kontraktionsfunktion der infarzierten Tiere (infarziert, infarktangrenzend und entfernte Region) wurde mit korrespondierenden Regionen der NL-Ratten verglichen. Zusätzlich wurde für die NL-Tiere eine segmentale Analyse der anterioren, lateralen, inferioren und septalen Wand durchgeführt. Ergebnisse: Bei den NL-Ratten fand sich das größte λ1 (größte radiale Dickenzunahme des Myokards) in der lateralen und anterioren Wand. Die WDZ wies ein ähnliches Verteilungsmuster auf, allerdings waren die nachweisbaren Unterschiede nicht signifikant. λ2 (größte zirkumferentielle Verkürzung) wies den kleinsten Wert in der anterioren Wand auf. V war lateral und inferior am größten. Der Winkel β war in allen Segmenten radial ausgerichtet. Die Strain-Analyse und die WDZ der Infarkttiere zeigten eine Funktionsbeeinträchtigung der Infarktregion und des angrenzenden Myokards im Vergleich mit den NL-Tieren (p < 0,001). Eine signifikante Beeinträchtigung des entfernten Myokards wies jedoch nur die Strain-Analyse nach (λ1, λ2 mit p < 0,001). Es fanden sich signifikante Funktionsunterschiede zwischen der infarzierten und angrenzenden sowie infarzierten und entfernten Region. Die Strain-Analyse (λ2, V, β mit p < 0,001) wies darüber hinaus statistisch signifikante Unterschiede zwischen der angrenzenden und entfernten Region nach. Schlussfolgerung: Die Strain-Analyse ist der WDZ in der Detektion regionaler Funktionsunterschiede normaler Tiere sowie der Differenzierung der Funktion im infarzierten, angrenzenden und entfernten Myokard überlegen.

Abstract

Purpose: To compare strain analysis and wall thickening (WT) analysis in differentiating the infarcted, adjacent, and remote zones in a rat model of myocardial infarction (MI). Material and Methods: Three normal (NL) and ten rats subjected to myocardial infarction were imaged on a 4.7T scanner. Gradient-echo and SPAMM-tagged cine images were acquired at three short axis levels of the left ventricle (LV). A homogenous strain analysis (principal strains λ1 and λ2, displacement D, angle β) and a WT-analysis (mm- and %-thickening) were performed in all slices demonstrating MI. Regional function was compared between infarcted rats (infarcted, adjacent and remote zone) and corresponding regions in the NL rats. Additional segmental analysis was performed in the NL rats for the anterior, lateral, inferior and septal wall. Results: In the NL rats, λ1 (greatest radial thickening) was greatest in the lateral and anterior wall. WT-analysis showed a pattern of function similar to λ1, however, regional differences using WT-analysis were not significant. λ2 (greatest circumferential shortening) was most negative in the anterior wall. D was greatest in the lateral and inferior wall. The angle β was radially directed in all segments. In the infarcted rats, both strain and WT-analyses revealed significant impairment in function in the infarcted and adjacent zones as compared to NL (p < 0.001). However, only the strain analysis (λ1, λ2, p < 0.001) detected significant remote myocardial dysfunction. Myocardial function differed significantly between the infarcted and adjacent and between the infarcted and remote regions. Strain analysis (λ2, D, β, p < 0.001) also identified significant functional differences between the adjacent and remote zones, however, no statistically significant differences were found using WT-analysis. Conclusion: Strain analysis is superior to WT-analysis in detecting regional functional variations in NL rats and in discriminating function in the infarcted, adjacent and remote zones post MI.

Literatur

  • 1 American Heart Association . Heart Disease and Stroke Statistics. Update 2003. 
  • 2 Gheorghiade M, Bonow R O. Chronic heart failure in the United States: a manifestation of coronary artery disease.  Circulation. 1998;  97 282-289
  • 3 Nahrendorf M, Wiesmann F, Hiller K H. et al . Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats.  J Magn Reson Imaging. 2001;  14 547-555
  • 4 Nahrendorf M, Hiller K H, Hu K. et al . Cardiac magnetic resonance imaging in small animal models of human heart failure.  Medical Image Analysis. 2003;  7 369-375
  • 5 Bellenger N G, Marcus N J, Rajappan K. et al . Comparison of techniques for the measurement of left ventricular function following cardiac transplantation.  J Cardiovasc Magn Reson. 2002;  4 255-263
  • 6 Holman E R, Buller V G, de Roos A. et al . Detection and quantification of dysfunctional myocardium by magnetic resonance imaging. A new three-dimensional method for quantitative wall-thickening analysis.  Circulation. 1997;  95 924-931
  • 7 Holman E R, Vliegen H W, van der Geest R J. et al . Quantitative analysis of regional left ventricular function after myocardial infarction in the pig assessed with cine magnetic resonance imaging.  Magn Reson Med. 1995;  34 161-169
  • 8 Sechtem U, Sommerhoff B A, Markiewicz W. et al . Regional left ventricular wall thickening by magnetic resonance imaging: evaluation in normal persons and patients with global and regional dysfunction.  Am J Cardiol. 1987;  59 145-151
  • 9 Nagel E, Lehmkuhl H B, Bocksch W. et al . Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography.  Circulation. 1999;  99 763-770
  • 10 Kramer U, Fenchel M, Helber U. et al . Multislice TrueFisp-MR-Bildgebung zur Erkennung stressinduzierter myokardialer Funktionsstörungen bei koronarer Herzerkrankung.  Fortschr Röntgenstr. 2003;  175 1355-1362
  • 11 Kivelitz D E, Borges A C, Walde T. et al . Beurteilung regionaler Wandbewegungsstörungen des Herzens - Vergleich von Gewebe-Doppler-Echokardiographie, MR-Tagging und Lävokardiographie.  Fortschr Rontgenstr. 2004;  176 1237-1244
  • 12 Kuijpers D, Ho K Y, van Dijkman P R. et al . Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging.  Circulation. 2003;  107 1592-1597
  • 13 Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization.  Radiology. 1989;  171 841-845
  • 14 Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging.  Radiology. 1989;  172 349-350
  • 15 Axel L, Goncalves R C, Bloomgarden D. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging.  Radiology. 1992;  183 745-750
  • 16 Scott C H, Sutton M S, Gusani N. et al . Effect of dobutamine on regional left ventricular function measured by tagged magnetic resonance imaging in normal subjects.  Am J Cardiol. 1999;  83 412-417
  • 17 Epstein F H, Yang Z, Gilson W D. et al . MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions.  Magn Reson Med. 2002;  48 399-403
  • 18 Kramer C M, Rogers W J, Theobald T M. et al . Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study.  Circulation. 1996;  94 660-666
  • 19 Kramer C M, Lima J A, Reichek N. et al . Regional differences in function within noninfarcted myocardium during left ventricular remodeling.  Circulation. 1993;  88 1279-1288
  • 20 Kramer C M, Ferrari V A, Rogers W J. et al . Angiotensin-converting enzyme inhibition limits dysfunction in adjacent noninfarcted regions during left ventricular remodeling.  J Am Coll Cardiol. 1996;  27 211-217
  • 21 Gotte M J, van Rossum A C, Twisk J WR. et al . Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium.  J Am Coll Cardiol. 2001;  37 808-817
  • 22 Melillo G, Lima J A, Judd R M. et al . Intrinsic myocyte dysfunction and tyrosine kinase pathway activation underlie the impaired wall thickening of adjacent regions during postinfarct left ventricular remodeling.  Circulation. 1996;  93 1447-1458
  • 23 Kim Y K, Mankad S, Kim S J. et al . Adding angiotensin II type 1 receptor blockade to angiotensin-converting enzyme inhibition limits myocyte remodeling after myocardial infarction.  J Card Fail. 2003;  9 238-245
  • 24 Zhou R, Pickup S, Glickson J D. et al . Assessment of global and regional myocardial function in the mouse using cine and tagged MRI.  Magn Reson Med. 2003;  49 760-764
  • 25 Yang Z, Berr S S, Gilson W D. et al . Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction.  Circulation. 2004;  109 1161-1167
  • 26 Pfeffer M A, Pfeffer J M, Fishbein M C. et al . Myocardial infarct size and ventricular function in rats.  Circ Res. 1979;  44 503-512
  • 27 Kass M WA, Terzopoulos D. Snakes: active contour models.  Int J Comp Vision. 1988;  1 321-331
  • 28 Young A A, Imai H, Chang C N. et al . Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization.  Circulation. 1994;  89 740-752
  • 29 Germain P, Roul G, Constantinesco A. et al . Comparison between abnormalities in segmental endocardial motion and abnormalities in segmental wall thickening after anterior myocardial infarction. A cine-magnetic resonance study.  Eur Heart J. 1996;  17 1350-1361
  • 30 Osman N F, Kerwin W S, McVeigh E R. et al . Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging.  Magn Reson Med. 1999;  42 1048-1060
  • 31 Garot J, Bluemke D A, Osman N F. et al . Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI.  Circulation. 2000;  101 981-988

Dr. med. D. Thomas

University of Pennsylvania, Department of Radiology, B6 Blockley Hall

423 Guardian Drive

Philadelphia, PA 19104

Phone: ++ 1/2 15/7 46-87 52

Fax: ++ 1/2 15/7 46-87 64

Email: daniel.thomas@uphs.upenn.edu