Aktuelle Rheumatologie 2005; 30(6): 374-381
DOI: 10.1055/s-2005-858832
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Techniken rheumatischer Krankheitsbilder

Molecular Techniques in Rheumatoid DiseasesE. Neumann1 , A. Hashimoto1 , R. Bohle2 , A. Schulz2 , U. Müller-Ladner1
  • 1Justus-Liebig-Universität Gießen, Franz-Groedel-Institut, Kerckhoff-Klinik, Abt. Rheumatologie und Klin. Immunologie, Bad Nauheim
  • 2Justus-Liebig-Universität Gießen, Zentrum für Pathologie, Gießen
Further Information

Publication History

Publication Date:
09 December 2005 (online)

Zusammenfassung

Die Analyse differentiell exprimierter Gene in multifaktoriellen Erkrankungen wie der rheumatoiden Arthritis (RA) ist für die Entwicklung neuer Therapien von großer Bedeutung. Die Analyse der Interaktionen zwischen den verschiedenen Zelltypen, der Zellmatrix, intrazellulärer Signalwege sowie den Interaktionen der verschiedenen Gewebe im Gelenk wie Knorpel, Knochen, Fettgewebe und dem Synovium tragen zum Verständnis der Pathophysiologie der RA bei. Nicht nur die Identifizierung und Charakterisierung neuer Moleküle zur Diagnose oder zur Beobachtung des Verlaufs der RA stehen im Vordergrund, sondern auch die Analyse ihrer Wirkungsweisen, Funktion und Interaktionen. Funktionelle Ansätze zur Genexpression basieren zumeist auf der Analyse von kultivierten synovialen Zellen oder Geweben, wie z. B. von synovialen Fibroblasten, Chondrozyten, Makrophagen oder Lymphozyten. Im Vordergrund stehen hierbei die molekularen Veränderungen oder Pathomechanismen im RA-Synovium. In diesem Review sollen die verschiedenen Methoden zur Analyse der Genexpression in Zellen und Geweben von Patienten mit Arthritiden dargestellt und verglichen werden. Insbesondere wird hierbei auf mögliche Fehlerquellen und Falschinterpretationen von Daten hingewiesen.

Abstract

The development of novel therapeutic approaches in multifactorial diseases such as rheumatoid arthritis (RA), depends to a great extent on the analysis of differentially regulated genes. The pathophysiology of RA, is best understood by examining the mechanisms of interaction between different cell types, the cell matrix and intracellular signaling pathways, as well as by examining the interactions between different tissues in the joint such as cartilage, bone, adipose tissue and the synovium. The identification and characterization of novel molecular markers plays a major role in diagnosing and monitoring RA. Equally important, is the analysis of their function, mode of action and interactions. Functional approaches to analyzing gene expression in arthritis are currently based on examining cultured synovial cells or tissues, such as synovial fibroblasts, chondrocytes, macrophages or lymphocytes, with emphasis on molecular changes and pathomechanisms. In this review, different methods of analyzing gene expression in cells and tissues from patients suffering from arthritis are presented and discussed. In addition, a special focus engages in the pitfalls leading to misinterpretation of the obtained data.

Literatur

  • 1 Judex M, Neumann E, Gay S. et al . Laser-mediated microdissection as a tool for molecular analysis in arthritis.  Methods Mol Med. 2004;  30 93-106
  • 2 Judex M, Neumann E, Lechner S. et al . Laser-mediated microdissection facilitates analysis of area-specific gene expression in rheumatoid synovium.  Arthritis Rheum. 2003;  30 97-102
  • 3 Blaschke S, Koziolek M, Schwarz A. et al . Proinflammatory role of fractalkine (CX3CL1) in rheumatoid arthritis.  J Rheumatol. 2003;  30 1918-1927
  • 4 Neumann E, Kullmann F, Judex M. et al . Identification of differentially expressed genes in rheumatoid arthritis by a combination of complementary DNA array and RNA arbitrarily primed-polymerase chain reaction.  Arthritis Rheum. 2002;  30 52-63
  • 5 Neumann E, Lechner S, Tarner I H. et al . Evaluation of differentially expressed genes by a combination of cDNA array and RAP-PCR using the AtlasImage 2.0 software.  J Autoimmun. 2003;  30 161-166
  • 6 Aidinis V, Plows D, Haralambous S. et al . Functional analysis of an arthritogenic synovial fibroblast.  Arthritis Res Ther. 2003;  30 R140-R157
  • 7 Scaife S, Brown R, Kellie S. et al . Detection of differentially expressed genes in synovial fibroblasts by restriction fragment differential display.  Rheumatology. 2004;  30 1346-1352
  • 8 Elliott S F, Coon C I, Hays E. et al . Bcl-3 is an interleukin-1-responsive gene in chondrocytes and synovial fibroblasts that activates transcription of the matrix metalloproteinase 1 gene.  Arthritis Rheum. 2002;  30 3230-3239
  • 9 Aigner T, Zien A, Hanisch D. et al . Gene expression in chondrocytes assessed with use of microarrays.  J Bone Joint Surg Am. 2003;  30 117-123
  • 10 Tardif G, Hum D, Pelletier J P. et al . Differential gene expression and regulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts.  Arthritis Rheum. 2004;  30 2521-2530
  • 11 Ray A, Shakya A, Kumar D. et al . Overexpression of serum amyloid A-activating factor 1 inhibits cell proliferation by the induction of cyclin-dependent protein kinase inhibitor p21WAF-1/Cip-1/Sdi-1 expression.  J Immunol. 2004;  30 5006-5015
  • 12 Winter A, Breit S, Parsch D. et al . Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells.  Arthritis Rheum. 2003;  30 418-429
  • 13 Jeong J G, Kim J M, Cho H. et al . Effects of IL-1beta on gene expression in human rheumatoid synovial fibroblasts.  Biochem Biophys Res Commun. 2004;  30 3-7
  • 14 Barnes M G, Aronow B J, Luyrink L K. et al . Gene expression in juvenile arthritis and spondyloarthropathy: pro-angiogenic ELR+ chemokine genes relate to course of arthritis.  Rheumatology. 2004;  30 973-979
  • 15 Firneisz G, Zehavi I, Vermes C. et al . Identification and quantification of disease-related gene clusters.  Bioinformatics. 2003;  30 1781-1786
  • 16 Lorenz P, Ruschpler P, Koczan D. et al . From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies.  Proteomics. 2003;  30 991-1002
  • 17 Firestein G S, Pisetsky D S. DNA microarrays: boundless technology or bound by technology? Guidelines for studies using microarray technology.  Arthritis Rheum. 2002;  30 859-861
  • 18 Distler O, Gay S, Neumann E. et al . Minimum information about a microarray experiment: comment on the editorial by Firestein and Pisetsky.  Arthritis Rheum. 2003;  30 861
  • 19 Eschrich S, Yeatman T J. DNA microarrays and data analysis: an overview.  Surgery. 2004;  30 500-503
  • 20 Grant J D, Somers L A, Zhang Y. et al . FGDP: functional genomics data pipeline for automated, multiple microarray data analyses.  Bioinformatics. 2004;  30 282-283
  • 21 Yamagiwa H, Sarkar G, Charlesworth M C. et al . Two-dimensional gel electrophoresis of synovial fluid: method for detecting candidate protein markers for osteoarthritis.  J Orthop Sci. 2003;  30 482-490
  • 22 Dasuri K, Antonovici M, Chen K. et al . The synovial proteome: analysis of fibroblast-like synoviocytes.  Arthritis Res Ther. 2004;  30 R161-R168
  • 23 Drynda S, Ringel B, Kekow M. et al . Proteome analysis reveals disease-associated marker proteins to differentiate RA patients from other inflammatory joint diseases with the potential to monitor anti-TNFalpha therapy.  Pathol Res Pract. 2004;  30 165-171
  • 24 Kuhn E, Wu J, Karl J. et al . Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards.  Proteomics. 2004;  30 1175-1186
  • 25 Boyle D L, Rosengren S, Bugbee W. et al . Quantitative biomarker analysis of synovial gene expression by real-time PCR.  Arthritis Res Ther. 2003;  30 R352-R360
  • 26 Pap T, Nawrath M, Heinrich J. et al . Cooperation of Ras- and c-Myc-dependent pathways in regulating the growth and invasiveness of synovial fibroblasts in rheumatoid arthritis.  Arthritis Rheum. 2004;  30 2794-2802
  • 27 Blaschke V, Reich K, Blaschke S. et al . Rapid quantitation of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells: validation of a new real-time RT-PCR technology.  J Immunol Methods. 2000;  30 79-90
  • 28 Zhang H G, Hyde K, Page G P. et al . Novel tumor necrosis factor alpha-regulated genes in rheumatoid arthritis.  Arthritis Rheum. 2004;  30 420-431
  • 29 Tsutsumi A, Suzuki E, Adachi Y. et al . Expression of tristetraprolin (G0S24) mRNA, a regulator of tumor necrosis factor-alpha production, in synovial tissues of patients with rheumatoid arthritis.  J Rheumatol. 2004;  30 1044-1049
  • 30 Clare Z Y, Taylor M M, Samson W K. et al . Antisense Inhibition: Oligonucleotides, Ribozymes, and siRNAs.  Methods Mol Med. 2004;  30 11-34
  • 31 Yen L, Svendsen J, Lee J S. et al . Exogenous control of mammalian gene expression through modulation of RNA self-cleavage.  Nature. 2004;  30 471-476
  • 32 Jarvis T C, Bouhana K S, Lesch M E. et al . Ribozymes as tools for therapeutic target validation in arthritis.  J Immunol. 2000;  30 493-498
  • 33 Miyashita T, Kawakami A, Tamai M. et al . Akt is an endogenous inhibitor toward tumor necrosis factor-related apoptosis inducing ligand-mediated apoptosis in rheumatoid synovial cells.  Biochem Biophys Res Commun. 2003;  30 397-404
  • 34 Zhou H W, Lou S Q, Zhang K. Recovery of function in osteoarthritic chondrocytes induced by p16INK4a-specific siRNA in vitro.  Rheumatology. 2004;  30 555-568
  • 35 Rutkauskaite E, Zacharias W, Schedel J. et al . Ribozymes that inhibit the production of matrix metalloproteinase 1 reduce the invasiveness of rheumatoid arthritis synovial fibroblasts.  Arthritis Rheum. 2004;  30 1448-1456
  • 36 Arts G J, Langemeijer E, Tissingh R. et al . Adenoviral vectors expressing siRNAs for discovery and validation of gene function.  Genome Res. 2003;  30 2325-2332
  • 37 Woolard J, Wang W Y, Bevan H S. et al . VEGF165 b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression.  Cancer Res. 2004;  30 7822-7835
  • 38 Joosten L A, Smeets R L, Koenders M I. et al . Interleukin-18 promotes joint inflammation and induces interleukin-1-driven cartilage destruction.  Am J Pathol. 2004;  30 959-967
  • 39 Ulrich-Vinther M, Maloney M D, Goater J J. et al . Light-activated gene transduction enhances adeno-associated virus vector-mediated gene expression in human articular chondrocytes.  Arthritis Rheum. 2002;  30 2095-2104
  • 40 Brooks S A, Connolly J E, Diegel R J. et al . Analysis of the function, expression, and subcellular distribution of human tristetraprolin.  Arthritis Rheum. 2002;  30 1362-1370
  • 41 van de Loo F A, Smeets R L, van den Berg W B. Gene therapy in animal models of rheumatoid arthritis: are we ready for the patients?.  Arthritis Res Ther. 2004;  30 183-196
  • 42 Chernajovsky Y, Gould D J, Podhajcer O L. Gene therapy for autoimmune diseases: quo vadis?.  Nat Rev Immunol. 2004;  30 800-811
  • 43 Choy G, Choyke P, Libutti S K. Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research.  Mol Imaging. 2003;  30 303-312
  • 44 Wunder A, Tung C H, Müller-Ladner U. et al . In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response.  Arthritis Rheum. 2004;  30 2459-2465
  • 45 Fiehn C, Müller-Ladner U, Gay S. et al . Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX.  Rheumatology. 2004;  30 1097-1105
  • 46 Fiehn C, Neumann E, Wunder A. et al . Methotrexate (MTX) and albumin coupled with MTX (MTX-HSA) suppress synovial fibroblast invasion and cartilage degradation in vivo.  Ann Rheum Dis. 2004;  30 884-886
  • 47 Finkenauer V, Bissinger T, Funk R H. et al . Confocal laser scanning microscopy of leukocyte adhesion in the microcirculation of the inflamed rat knee joint capsule.  Microcirculation. 1999;  30 141-152
  • 48 Sundarrajan M, Boyle D L, Chabaud-Riou M. et al . Expression of the MAPK kinases MKK-4 and MKK-7 in rheumatoid arthritis and their role as key regulators of JNK.  Arthritis Rheum. 2003;  30 2450-2460
  • 49 van Lent P, Span P, Sloetjes A. et al . Expression and localisation of the now metalloproteinase inhibitor RECK (reversion inducing cysteine-rich protein with Kazal motifs) in inflamed synovial membranes of patients with rheumatoid arthritis.  Ann Rheum Dis. 2005;  30 368-374
  • 50 Hashimoto G, Shimoda M, Okada Y. ADAMTS4 (aggrecanase-1) interaction with the C-terminal domain of fibronectin inhibits proteolysis of aggrecan.  J Biol Chem. 2004;  30 32 483-32 491

Dr. Elena Neumann

Justus-Liebig-Universität Gießen, Franz-Groedel-Institut, Kerckhoff-Klinik, Abt. Rheumatologie und Klin. Immunologie

Benekestr. 2 - 8

61231 Bad Nauheim

Phone: ++ 49/60 32/9 96-28 01

Fax: ++ 49/60 32/9 96-28 09

Email: e.neumann@kerckhoff-klinik.de