Subscribe to RSS
DOI: 10.1055/s-2005-858833
© Georg Thieme Verlag KG Stuttgart · New York
Osteoporose und Genetik des Knochenstoffwechsels
Osteoporosis and Genetics of Bone MetabolismPublication History
Publication Date:
09 December 2005 (online)
Zusammenfassung
Die Osteoporose wird definiert als eine systemische Skeletterkrankung mit niedriger Knochenmasse und einem Verlust der normalen Mikroarchitektur, woraus eine erhöhte Knochenbrüchigkeit und vermehrte Frakturgefährdung folgen. Dabei ist die klinisch manifeste Osteoporose der Endzustand einer zunächst klinisch inapparenten, im weiteren Verlauf jedoch progredienten Verminderung von Knochenmasse und -dichte, der Osteopenie. Bis dato existieren nur Diagnostika, die einen Status quo der Erkrankung widerspiegeln. Von hohem klinischen Interesse wären zukünftig jedoch prädiktive Parameter. Familien- und Zwillingsstudien belegen, dass die Osteoporose in hohem Maß genetisch determiniert ist. Die Forschung zur Aufdeckung der genetischen Basis der Osteoporose bzw. des Knochenstoffwechsels allgemein hat sich insbesondere in den letzten Jahren etabliert, die Untersuchungen zu potenziellen Genen und Polymorphismen sind aktuell jedoch eher von wissenschaftlichem Interesse und noch ohne klinische Relevanz. Das Vitamin-D-Rezeptor-Gen ist der am besten untersuchte molekulare Marker für die Genese der Osteoporose. Polymorphismen anderer Kandidatengene wie Hormonrezeptor-, Zytokin- oder Kollagen-Gene sind hinsichtlich Gen-Gen- und Gen-Umwelt-Interaktionen von wissenschaftlichem Interesse. Die Suche nach genetischen Faktoren des bei der Osteoporose gestörten Knochenstoffwechsels wird es zukünftig möglicherweise ermöglichen, potenzielle Wege zur Diagnostik, Prävention (über die Prädiktion eines Erkrankungsrisikos) und auch in der Therapie (aus den molekularen und biochemischen Funktionen der beteiligten Gene) zu entwickeln.
Abstract
Osteoporosis is a systemic skeletal disorder affecting bone mass and bone structure, with increased bone fragility and fracture risk. The clinical state of manifest osteoporosis is the final outcome of an initially inapparent, yet progressive reduction of bone mineral density and bone mass, osteopenia. To date, existing diagnostic methods reflect only the current state of the disease. Future predictive parameters, would however be of great clinical value. Osteoporosis exhibits a substantial genetic component as revealed by prevalence studies in families and twins. Genetic research on osteoporosis and bone metabolism, has been well established in recent years. So far however, research on potential genes and polymorphisms is chiefly of scientific interest without clinical relevance. The Vitamin D receptor gene has been shown to be a molecular marker, correlating with the development of osteoporosis. Other candidate gene polymorphisms such as hormone receptor, cytokine and collagen genes are currently being analysed regarding complex gene-gene and gene-environment interactions. Research on genetic factors for bone metabolism disorders in osteoporosis is still at its beginning, but we are looking forward to important new insights into skeletal pathophysiology that will contribute to new terms of prevention (predictive risk factors), diagnosis and treatment (biochemical and molecular gene function) of osteoporosis.
Schlüsselwörter
Osteoporose - Knochendichte - Genetik - molekulare Medizin
Key words
Osteoporosis - bone density - genetics - molecular medicine
Literatur
- 1 Consensus Development Conference . Diagnosis, Prophylaxis and Treatment of Osteoporosis. Am J Med. 1993; 30 646-650
- 2 Pfeilschifter J. (Gasthrsg). DVO-Leitlinien zur Osteoporose. Osteologie. 2003; 30 1249-1370
- 3 Fassbender W J, Scheidt-Nave C H, Pfeilschifter J. Die neuen Leitlinien zur Osteoporose. Empfehlungen des Dachverbandes der deutschsprachigen osteologischen Fachgesellschaften. Dtsch Med Wochenschr. 2003; 30 1615-1617
- 4 Roy D K, O’Neill T W, Finn J D. et al . Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int. 2003; 30 19-26
- 5 Ringe J D, Faber H, Dorst A. Alendronate treatment of established primary osteoporosis in men: results of a 2-year prospective study. J Clin Endocrinol Metabol. 2001; 30 5252-5255
- 6 Wüster C, Engels K, Renner E. et al . Meßwertinterpretation in der Osteodensitometrie. Dtsch Ärztebl. 1998; 30 2547-2551
- 7 Pocock N A, Eisman J A, Hopper J L. et al . Genetic determinants of bone mass in adults: a twin study. J Clin Invest. 1987; 30 706-710
- 8 Slemenda C W, Christian J C, Williams J. et al . Genetic determinants of bone mass in adult women: a re-evaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res. 1991; 30 561-567
- 9 Krall E A, Dawson-Hughes B. Heritable and lifestyle determinants of bone mineral density. J Bone Miner Res. 1993; 30 1-9
- 10 Arden N K, Baker J, Hogg C. et al . The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res. 1996; 30 530-535
- 11 Garnero P, Arden N K, Griffiths G. et al . Genetic influence of postmenopausal bone turnover: a twin study. J Clin Endocrinol Metab. 1996; 30 140-146
- 12 Harris M, Nguyen T V, Howard G M. et al . Genetic and environmental correlations between bone formation and bone mineral density: a Twin study. Bone. 1998; 30 141-145
- 13 Görtz B, Fassbender W J. Genetik der Osteoporose. Der Orthopäde. 2001; 30 412-417
- 14 Little R D, Carulli J P, Del M astro RG. et al . A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002; 30 11-19
- 15 Gong Y, Slee R B, Warman M L. et al . LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001; 30 513-523
- 16 Rawadi G, Vayssiere B, Dunn F. et al . BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a WNT autocrine loop. J Bone Miner Res. 2003; 30 1842-1853
- 17 Devoto M, Specchia C, Li H H. et al . Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1p36. Hum Mol Genet. 2001; 30 2447-2452
- 18 Rizzoli R, Bonjour J P, Ferrari S L. Osteoporosis, genetics and hormones. J Mol Endocrinol. 2001; 30 79-94
- 19 Hobson E E, Ralston S H. Role of genetic factors in the pathophysiology and management of osteoporosis. Clin Endocrinol. 2001; 30 1-9
- 20 Obermayer-Pietsch B, Frühauf G, Chararas K. et al . Association of the vitamin D-receptor genotype „BB” with low bone density in hyperthyroidism. J Bone Miner Res. 2000; 30 1950-1955
- 21 Krall E A, Parry P, Lichter J B. et al . Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res. 1995; 30 978-984
- 22 Chen H Y, Chen W C, Tsai H D. et al . Relation of the estrogen receptor alpha gene microsatellite polymorphism to bone mineral density and the susceptibility to osteoporosis in postmenopausal Chinese women in Taiwan. Maturitas. 2001; 30 143-150
- 23 Yamada Y. Association of polymorphismus of the transforming growth factor-beta l gene with genetic susceptibility to osteoporosis. Pharmacogenetics. 2001; 30 765-771
- 24 Lange U, Jung O, Teichmann J. et al . Relationship between disease activity and serum levels of vitamin D metabolites and parathyroid hormone in ankylosing spondylitis. Osteoporos Int. 2001; 30 1031-1035
- 25 Obermayer-Pietsch B, Lange U, Tauber G. et al . Vitamin D receptor initiation codon polymorphism,bone density and inflammatory activity of patients with ankylosing spondylitis. Osteoporos Int. 2003; 30 995-1000
- 26 Lange U. Neue Erkenntnisse zum Knochenstoffwechsel bei ankylosierender Spondylitis. Ankylosierende Spondylitis. Schmidt KL. Nürnberg; Novartis 2001: 189-206
- 27 Gennari L, Brandi M L. Genetics of male osteoporosis. Calcif Tissue Int. 2001; 30 200-204
- 28 Morrison N A, Qi J C, Tokita A. et al . Prediction of bone density from vitamin D receptor alleles. Nature. 1994; 30 248-287
- 29 Amling M, Herden S, Poesl M. et al . Heterogenity of the skeleton: Comparison of the trabecular micorarchitecture of the spine, the iliac crest, the femur and the calcaneus. J Bone Min Res. 1996; 30 36-45
- 30 Morrison N A, Yeoman R, Kelly P J. et al . Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci USA. 1992; 30 6665-6669
- 31 Murakami F, Hagino H, Shimomura T. et al . Association of bone mineral density with vitamin D receptor gene polymorphism-changes in radial bone mineral density with long-term follow-up: longitudinal study. Rinsho Byori. 1998; 30 766-773
- 32 Rauch F, Rademacher A, Danz A. et al . Vitamin D receptor genotypes and changes of bone density in physically active German women with high calcium intake. Exp Clin Endocrinol Diabetes. 1997; 30 103-108
- 33 Sainz J, Van Tornout J M, Loro M L. et al . Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med. 1997; 30 77-83
- 34 Tsai K S, Hsu S H, Cheng W C. et al . Bone mineral density and bone markers in relation to vitamin D receptor gene polymorphismus in Chinese men und women. Bone. 1996; 30 513-518
- 35 Dawson H ughes B, Harris S S, Finneran S. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endorinol Metab. 1995; 30 3657-3661
- 36 Salomone L M, Glynn N W, Black D M. et al . Determinants of premenopausal bone mineral density: the interplay of genetic and lifestyle factors. J Bone Miner Res. 1996; 30 1557-1565
- 37 Krall E A, Parry P, Lichter J A. et al . Vitamin D receptor alleles and rates of bone loss: Influences of years since menopause and calcium intake. J Bone Min Res. 1996; 30 178-185
- 38 Barger-Lux M J, Heaney R P, Hayes H F. et al . Vitamin D receptor gene polymorphism, bone mass, body size and vitamin D receptor density. Calcif Tissue. 1995; 30 161-162
- 39 Fleet J C, Harris S S, Wood R J. et al . The BsmI vitamin D receptor restriction fragment lenght polymorphism (BB) predicts low bone density in premenopausal black and white women. J Bone Min Res. 1995; 30 985-990
- 40 Salamone S L, Ferrell R, Black M. et al . The association between vitamin D receptor polymorphisms and bone mineral density at the spine, hip and whole-body in premenopausal woman. Osteoporos Int. 1996; 30 63-68
- 41 Liu Y Z, Liu Y J, Recker R R. et al . Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol. 2003; 30 147-196
- 42 Ferrari S, Rizzoli R, Chevally T. et al . Vitamin D receptor gene polymorphisms and change in lumbar spine bone mineral density. Lancet. 1995; 30 423-424
- 43 Howard G, Nguyen T, Morrison N. et al . Genetic influences on bone density: Physiological correlates of vitamin D receptor gene alleles in premenopausal women. J Clin Endocrin Metabol. 1995; 30 2800-2805
- 44 Jap D, Oppelt P G, Fasching P. et al . Genetik der Osteoporose. J Menopause. 2001; 30 10-16
- 45 Fournier B, Gineyts E, Delmas P D. Evidence that free gamma carboxyglutamic acid circulates in serum. Clin Chem Acta. 1989; 30 173-182
- 46 Kelly P J, Hopper J L, Macaskill G T. et al . Genetic factors in bone turnover. J Clin Endocrinol Metab. 1991; 30 808-813
- 47 Morrison N A, Shine J, Fragonas J C. et al . 1,25-dihydroxyvitamin D-responsive element and glucocortcoid repression in the osteocalcin gene. Sciene. 1989; 30 1158-1161
- 48 McDonnell D P, Scott R A, Kerner S A. et al . Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expresion. Mol Endocrinol. 1989; 30 635-644
- 49 Tokita A, Matsumoto H, Morrison N A. et al . Vitamin D receptor alleles, bone mineral density and turnover in premenopausal Japanese women. J Bone Miner Res. 1996; 30 1003-1009
- 50 Howard G, Nguyen T, Morrison N. et al . Genetic influence of bone density: Physilogical correlates of vitamin D receptor gene alleles in premenopausal women. J Cin Endocrinol Metabol. 1995; 30 2800-2805
- 51 Hansen T S, Abrahamsen B, Henriksen F L. et al . Vitamin D receptor alleles do not predict bone mineral density or bone loss in Danish perimenopausal women. Bone. 1998; 30 571-575
- 52 Zhao J, Zhou X, Meng X. et al . Polymorphisms of vitamin D receptor gene and its association with bone mineral density and osteocalcin in Chinese. Chin Med J. 1997; 30 366-371
- 53 Tsai K S, Hsu S H, Cheng W C. et al . Bone mineral density and bone markers in relation to vitamin D receptor gene polymorphismus in Chinese men und women. Bone. 1996; 30 513-518
- 54 Lim S K, Park Y S, Park J M. et al . Lack of association between vitamin D receptor genotypes ans osteoporosis in Koreans. J Clin endocrinol Metabol. 1995; 30 3677-3681
- 55 Murakami F, Hagino H, Shimomura T. et al . Association of bone mineral density with vitamin D receptor gene polymorphism-changes in radial bone mineral density with long-term follow-up: longitudinal study. Rinsho Byori. 1998; 30 766-773
- 56 Willing M, Sowers M, Aron D. et al . Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res. 1998; 30 695-705
- 57 McClure L, Eccleshall T R, Gross C. et al . Vitamin D receptor polymorphisms, bone mineral density, and bone metabolism in postmenopausal Mexican-american women. J Bone Miner Res. 1997; 30 234-244
- 58 Rauch F, Radermacher A, Danz A. et al . Vitamin D receptor genotypes and changes of bone density in physically active German women with high calcium intake. Exp Clin Endocrinol Diabetes. 1997; 30 103-108
- 59 Dohi Y, Iki M, Ohgushi H. et al . A novel polymorphism in the promoter region for the human osteocalcin gene: the possibility of a correlation with bone mineral density in postmenopausal Japanese women. J Bone Miner Res. 1998; 30 1633-1639
- 60 Sano M, Inhoue S, Hosoi T. et al . Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun. 1995; 30 378-383
- 61 Kobayashi S, Inoue S, Hosoi T. et al . Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res. 1996; 30 306-311
- 62 Han K o, Moon I G, Kang Y S. et al . Nonassociation of estrogen receptor genotypes with bone mineral density and estrogen responsiveness to hormone replacement therapy in Korean postmenopausal women. J Clin Endocrinol Metab. 1997; 30 991-995
- 63 Keen R W, Major P J, Lanchbury J S. et al . Vitamin D receptor gene polymorphism and bone loss. Lancet. 1995; 30 990-991
-
64 Online Mendelian Inheritance in man (OMIM) http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db = OMIM.
- 65 Bulun S E. Aromatase deficiency in women and men: Would you have predicted the phenotypes?. J Clin Endocrinol Metab. 1996; 30 867-871
- 66 Masi L, Becherini L, Gennari L. et al . Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J Clin Endocrinol Metab. 2001; 30 2263-2269
- 67 Tofteng C L, Kindmark A, Brändström H. et al . Polymorphism in the CYP19 and AR genes - Relation to bone mass and longitudinal bone changes in postmenopausal women with or without hormone replacement therapy: The Danish Osteoporosis Prevention Study. Calcif Tissue Int. 2004; 30 25-34
- 68 Somner J, McLellan S, Cheung J. et al . Polymorphisms in the P450 c17 (17-Hydroxylase/17,20-Lyase) and P450 c19 (Aromatase) genes: association with serum sex steroid concentrations and bone mineral density in postmenopausal women. J Clin Endocrinol Metabol. 2004; 30 344-351
- 69 Pesch H J, Scharf H P, Lauer G. et al . Der altersabhängige Verbundbau der Lendenwirbelkörper. Eine Struktur- und Formanalyse. Virchows Arch A Path Anat and Histol. 1980; 30 21-41
- 70 Grant S FA, Reid D M, Blake G. et al . Reduced bone density and osteoporosis associated with polymorphic SP1 binding site in the collagen type I 1 gene. Nature Genetics. 1996; 30 203-206
- 71 Mann V, Hobson E E, Li B. et al . A COL1A1Sp1 binding site polymorphism predniposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest. 2001; 30 899-907
- 72 Mann V, Ralston S H. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone. 2003; 30 711-717
- 73 Uitterlinden A G, Burger H, Huang Q. et al . Relation of alleles of the collagen type I (alpha) 1 gene to bone density and the risk of osteoporotic fractues in postmenopausal women. N Engl J Med. 1998; 30 1016-1021
- 74 Harris S S, Patel M S, Cole D EC. et al . Association of the collagen type i(alpha)1 Sp 1 polymorphism with five-year rates of bone in older adults. Calcif Tissue Int. 2000; 30 268-271
- 75 Heegard A M, Jorgensen H L, Vestergaad A W. et al . Lack of influence of collagen type i(alpha)1 Sp 1 binding site polymorphism on the rate of bone loss in cohort of postmenopausal danish women followed for 19 years. Calif Tissue Int. 2000; 30 409-413
- 76 Gong G, Johnson M L, Barger-Lux M J. et al . Association of bone dimensions with a parathyroid hormone gene polymorphism in women. Osteoporos Int. 1999; 30 307-311
- 77 Taboulet J, Frenkian M, Frendo J L. et al . Calcitonin receptor polymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet. 1998; 30 2119-2133
- 78 Masi L, Becherini L, Colli E. et al . Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italien women. Biochem Biophys Res Commun. 1998; 30 190-195
- 79 Shiraki M, Shiraki Y, Aoki C. et al . Association of bone mineral density with apolipoprotein A phenotype. J Bone Miner Res. 1997; 30 1438-1445
- 80 Cauley J A, Zmuda J M, Jaffe K. et al . Apolipoprotein E polymorphism: A new genetic marker of hip fracture risk - The study of osteoporotic fractures. J Bone Miner Res. 1999; 30 1175-1181
- 81 Kiel D P, Cupples L A, Myers R H. et al . Bone mineral density (BMD), hip fracture and apolipoprotein E (ApoE) genotype. Bone. 1998; 30 243-249
- 82 Hofbauer L C, Heufelder A R. Role of receptor activator of nuclear factor-kB ligand and osteoprotegerin in bone cell biology. J Mol Med. 2001; 30 243-253
- 83 Simonet W S, Lacey D L, Dunstan C R. et al . Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997; 30 309-319
- 84 Bucay N, Sarosi I, Dunstan C R. et al . Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998; 30 1260-1268
- 85 Arko B, Prezelj J, Komel R. et al . Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metabol. 2002; 30 4080-4084
- 86 Langdahl B L, Carstens M, Stenkjaer L. et al . Polymorphisms in the osteoprotegerin are associated with osteoporotic fractues. J Bone Miner Res. 2002; 30 1245-1255
- 87 Wuyts W, Van Wesenbeek L, Morales-Piga A. et al . Evaluation of the role of RANK and OPG genes in Paget’s disease of bone. Bone. 2001; 30 104-107
- 88 Hofbauer L C, Schoppet M. Editorial: Osteoprotegerin gene polymorphism and the risk of osteoporosis and vascular disease. J Clin Endocrinol Metabol. 2002; 30 4078-4079
- 89 Langdahl B L, Lokke E, Carstens M. et al . Osteoporosis fractures are associated with an 86-base-pair repeat polymorphism in the Interleukin-1-receptor antagonist gene but not with polymorphisms in the Interleukin-1ß gene. J Bone Miner Res. 2000; 30 402-414
- 90 Arden N K, Baker J, Hogg C. et al . The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length; a study of postmenopausal twins. J Bone Miner Res. 1996; 30 530-535
- 91 Ralston S H. Analysis of gene expression in human bone biopsies by polymerase chain reaction; evidende for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res. 1994; 30 883-890
- 92 Ota N, Hunt S C, Nakajima T. et al . Linkage of interleukin 6 locus to human osteopenia by sibling pair analysis. Hum Genet. 1999; 30 253-257
- 93 Takacs I, Koller D L, Peacock M. et al . Sib pair linkage and association studies between bone mineral density and the Interleukin-6 gene locus. Bone. 2000; 30 169-173
- 94 Murry E, McGuigan F, Grant S FA. et al . Polymorphisms of the Interleukin-6 gene are associated with bone mineral density. Bone. 1997; 30 89-92
- 95 Yamada Y, Miyauchi A, Goto J. et al . Association of polymorphism of the transforming growth factor-beta I gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res. 1998; 30 1569-1576
- 96 Langdahl B L, Knudsen J Y, Jensen H K. et al . A sequence variation: 713 - 8delc in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associtated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone. 1997; 30 289-294
- 97 Hinke V, Seck T, Clanget C. et al . Association of transforming growth factor-ß1 (TGFß1) T29 C gene polymorphism with bone mineral density (BMD), changes in BMD, and serum concentrations of TGF-ß1 in a population-based sample of postmenopausal German women. Calcif Tissue Int. 2001; 30 315-320
- 98 Flatz G. Genetics of lactose digestion in humans. Adv Hum Genet. 1987; 30 1-77
-
99 Jackson Laboratory .Mouse Genome Informatics (MGI 2.98): http://www.informatics.jax.org/ (April 2004).
- 100 Obermayer-Pietsch B M, Bonelli C M, Walter D E. et al . Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J Bone Miner Res. 2004; 30 42-47
- 101 Langenbeck U. Erb- und Umweltfaktoren in der Entstehung der Osteoporose. Dtsch Ärztebl. 2005; 30 A664-A672
- 102 Enattah N S, Sahi T, Savilahti E. et al . Identification of a variant associated with adult-type hypolactasia. Nat Genet. 2002; 30 233-237
- 103 Spotila L D, Rodriguez H, Koch M. et al . Association analysis of bone mineral density and single nucleotide polymorphisms in two candidate genes on chromosome 1p36. Calcif Tissue Int. 2003; 30 140-146
- 104 Kajita M, Ezura Y, Iwasaki H. et al . Association of the - 381T/C promoter variation of the brain natriuretic peptide gene with low bone-mineral density and rapid postmenopausal bone loss. J Hum Genet. 2003; 30 77-81
Priv.-Doz. Dr. med. Uwe Lange
Kerckhoff-Klinik, Abteilung Rheumatologie, Klinische Immunologie, Physikalische Medizin und Osteologie
Benekestr. 2 - 8
61231 Bad Nauheim
Phone: ++ 49/60 32/9 96-21 01
Fax: ++ 49/60 32/9 96-21 85
Email: U.Lange@kerckhoff-klinik.de