Horm Metab Res 2005; 37(1): 21-25
DOI: 10.1055/s-2005-861027
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Inhibition of Vascular Endothelial Growth Factor (VEGF) Does Not Affect Early Renal Changes in a Rat Model of Lean Type 2 Diabetes

B.  F.  Schrijvers1, 2 , A.  S.  De Vriese2, 3 , R.  G.  Tilton4 , J.  Van De Voorde5 , L.  Denner4 , N.  H.  Lameire2 , A.  Flyvbjerg1
  • 1Medical Research Laboratories, Institute of Experimental Clinical Research, Aarhus University Hospital, Aarhus, Denmark
  • 2Renal Unit, Department of Internal Medicine, Gent University Hospital, Gent, Belgium
  • 3Renal Unit, Department of Internal Medicine, AZ Sint-Jan AV, Brugge, Belgium
  • 4Division of Endocrinology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
  • 5Department of Physiology and Physiopathology, Gent University, Gent, Belgium
Further Information

Publication History

Received 15 April 2004

Accepted after second Revision 20 July 2004

Publication Date:
09 February 2005 (online)

Abstract

Type 2 diabetes is the most frequent cause of end-stage renal failure in many Western countries. Approximately 10 - 15 % of all type 2 diabetics are lean. Various growth factors and cytokines have been implicated in the pathophysiology of diabetic kidney disease, including vascular endothelial growth factor (VEGF). To elucidate a role for VEGF in the renal changes associated with type 2 diabetes, we examined the effect of a VEGF-antibody (ab) on early renal changes in the Goto-Kakizaki (GK) rat, a lean type 2 diabetes model. GK-rats were treated for 6 weeks with the VEGF-ab or with an isotype-matched irrelevant IgG. Wistar rats were used as non-diabetic controls. Placebo-treated GK-rats showed a pronounced increase in glomerular volume and urinary albumin excretion (UAE) and no change in the renal expression of endothelial nitric oxide synthase (eNOS) compared to placebo-treated non-diabetic controls. Kidney weight and creatinine clearance were no different between the groups. VEGF-ab treatment had no effect on glomerular volume, UAE, eNOS expression, body weight, blood glucose levels or food intake, but lowered serum insulin levels in non-diabetic and diabetic animals. We conclude that VEGF inhibition has minimal effects on early renal changes in GK-rats.

References

  • 1 Zimmet P. The burden of type 2 diabetes: are we doing enough?.  Diabetes Metab. 2003;  29 6S9-6S18
  • 2 Harvey J N. Trends in the prevalence of diabetic nephropathy in type 1 and type 2 diabetes.  Curr Opin Nephrol Hypertens. 2003;  12 317-322
  • 3 Flyvbjerg A. Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease.  Diabetologia. 2000;  43 1205-1223
  • 4 De Vriese A S, Tilton R G, Elger M, Stephan C C, Kriz W, Lameire N H. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes.  J Am Soc Nephrol. 2001;  12 993-1000
  • 5 Flyvbjerg A, Dagnæs-Hansen F, De Vriese A S, Schrijvers B F, Tilton R G, Rasch R. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody.  Diabetes. 2002;  51 3090-3094
  • 6 Boehm B O, Lang G, Feldmann B, Kurkhaus A, Rosinger S, Volpert O, Lang G K, Bouck N. Proliferative diabetic retinopathy is associated with a low level of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor. A pilot study.  Horm Metab Res. 2003;  35 382-386
  • 7 Schrijvers B F, De Vriese A S, Van de Voorde J, Rasch R, Lameire N H, Flyvbjerg A. Long-term renal changes in the Goto-Kakizaki rat, a model of lean type 2 diabetes.  Nephrol Dial Transplant. 2004;  19 1-6
  • 8 Hood J D, Meininger C J, Ziche M, Granger H J. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells.  Am J Physiol. 1998;  274 H1054-H1058
  • 9 Tilton R G, Chang K C, LeJeune W S, Stephan C C, Brock T A, Williamson J R. Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF.  Invest Ophthalmol Vis Sci. 1999;  40 689-696
  • 10 Tilton R G, Kawamura T, Chang K C, Ido Y, Bjercke R J, Stephan C C, Brock T A, Williamson J R. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor.  J Clin Invest. 1997;  99 2192-2202
  • 11 Christensen C, Ørskov H. Rapid screening PEG radioimmunoassay for quantification of pathological microalbuminuria.  Diabetic Nephrology. 1984;  3 92-94
  • 12 Gundersen H J, Bagger P, Bendtsen T F, Evans S M, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard J R, Pakkenberg B. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis.  APMIS. 1988;  96 857-881
  • 13 Weibel E R. Stereologic methods. Practical methods for biological morphometry. London; Academic Press 1979: 51-57
  • 14 Cha D R, Kim N H, Yoon J W, Jo S K, Cho W Y, Kim H K, Won N H. Role of vascular endothelial growth factor in diabetic nephropathy.  Kidney Int Suppl. 2000;  77 S104-S112
  • 15 Miele C, Rochford J J, Filippa N, Giorgetti-Peraldi S, van Obberghen E. Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways.  J Biol Chem. 2000;  275 21 695-21 702
  • 16 Stallmeyer B, Pfeilschifter J, Frank S. Systemically and topically supplemented leptin fails to reconstitute a normal angiogenic response during skin repair in diabetic ob/ob mice.  Diabetologia. 2001;  44 471-479
  • 17 Cooper M E, Vranes D, Youssef S, Stacker S A, Cox A J, Rizkalla B, Casley D J, Bach L A, Kelly D J, Gilbert R E. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes.  Diabetes. 1999;  48 2229-2239
  • 18 Chou E, Suzuma I, Way K J, Opland D, Clermont A C, Naruse K, Suzuma K, Bowling N L, Vlahos C J, Aiello L P, King G L. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue.  Circulation. 2002;  105 373-379
  • 19 Schrijvers B F, Rasch R, Tilton R G, Flyvbjerg A. High protein-induced glomerular hypertrophy is vascular endothelial growth factor-dependent.  Kidney Int. 2002;  61 1600-1604
  • 20 Flyvbjerg A, Schrijvers B F, De Vriese A S, Tilton R G, Rasch R. Compensatory glomerular growth after unilateral nephrectomy is VEGF dependent.  Am J Physiol Endocrinol Metab. 2002;  283 E362-E366
  • 21 Goto Y, Kakizaki M, Masaki N. Spontaneous diabetes produced by selective breeding of normal wistar rats.  Proc Japan Acad. 1975;  51 80-85
  • 22 Ling Z C, Efendic S, Wibom R, Abdel-Halim S M, Östenson C G, Landau B R, Khan A. Glucose metabolism in Goto-Kakizaki rat islets.  Endocrinology. 1998;  139 2670-2675
  • 23 Wolf G, Chen S, Han D C, Ziyadeh F N. Leptin and renal disease.  Am J Kidney Dis. 2002;  39 1-11
  • 24 Christofori G, Naik P, Hanahan D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis.  Mol Endocrinol. 1995;  9 1760-1770
  • 25 Öberg-Welsh C, Sandler S, Andersson A, Welsh M. Effects of vascular endothelial growth factor on pancreatic duct cell replication and the insulin production of fetal islet-like cell clusters in vitro.  Mol Cell Endocrinol. 1997;  126 125-132
  • 26 Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh L C, Gerber H P, Ferrara N, Melton D A. Role of VEGF-A in vascularization of pancreatic islets.  Curr Biol. 2003;  13 1070-1074

Bieke Schrijvers, M. D.

Renal Unit, 0K12A, Gent University Hospital

De Pintelaan 185 · 9000 Gent · Belgium

Phone: +32 (9) 2403365

Fax: +32 (9) 2403059

Email: Bieke.Schrijvers@UGent.be