RSS-Feed abonnieren
DOI: 10.1055/s-2005-861158
Pyrrolidon Carboxypeptidase Activities in the Hypothalamus-pituitary-thyroid and Hypothalamus-pituitary-ovary Axes of Rats with Mammary Gland Cancer Induced by N-methyl Nitrosourea
Publikationsverlauf
Received 27 April 2004
Accepted after revision 12 August 2004
Publikationsdatum:
21. März 2005 (online)
Abstract
Pyrrolidon carboxypeptidase is an omega-peptidase that hydrolyses N-terminal pyroglutamyl residues from biologically active peptides such as gonadotropin-releasing and thyrotrophin-releasing hormones. We previously described a decrease in both rat and human pyrrolidon carboxypeptidase activity with breast cancer, suggesting that gonadotropin-releasing hormone may be an important local intracrine, autocrine and/or paracrine hormonal factor in the pathogenesis of breast cancer while playing a role in the tumoral process. However, the other susceptible substrate of pyrrolidon carboxypeptidase, thyrotrophin-releasing hormone, may also be modified with breast cancer, supporting an association between breast cancer and thyroid disorders. The present work analyses soluble and membrane-bound pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes in N-methyl nitrosourea-induced breast cancer in rats. Our aim was to determine the possible relationship between gonadotropin-releasing hormone and thyrotrophin-releasing hormone regulation through pyrrolidon carboxypeptidase activity. We propose that pyrrolidon carboxypeptidase activity dysregulation at various local and systemic levels may participate in the initiation, promotion and progression of breast cancer induced in rat by N-methyl nitrosourea through the increase in gonadotropin-releasing hormone. Since pyrrolidon carboxypeptidase activity also acts on thyrotrophin-releasing hormone, the dysregulation of this enzyme’s activity could indirectly affect hypothalamus-pituitary-thyroid axis function, and thus potentially represent a link between the diseases of thyroid and breast cancer.
Key words
Pyroglutamyl aminopeptidase · Breast cancer · GnRH · TRH · Hypothalamus-pituitary-thyroid axis · Hypothalamus-pituitary-ovary axis
References
- 1 Cummins P M, O’Connor B. Pyroglutamyl peptidase: an overview of the three known enzymatic forms. Biochim Biophys Acta. 1998; 1429 1-17
- 2 McDonald J K, Barret A. Mammalian Proteases: A Glossary and Bibliography. Exopeptidase. London; Academic Press 1986
- 3 Browne P, O’Cuinn G. An evaluation of the role of a pyroglutamyl peptidase, a post-proline cleaving enzyme and a post-proline dipeptidyl amino peptidase, each purified from the soluble fraction of guinea-pig brain, in the degradation of thyroliberin in vitro. Eur J Biochem. . 1983; 137 75-87
- 4 O’Connor B, O’Cuinn G. Localization of a narrow-specificity thyroliberin hydrolyzing pyroglutamate aminopeptidase in synaptosomal membranes of guinea-pig brain. Eur J Biochem. 1984; 144 271-278
- 5 Bauer K. Purification and characterization of the thyrotropin-releasing-hormone-degrading ectoenzyme. Eur J Biochem. 1994; 224 387-396
- 6 Russo J, Russo I H. Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia. 2000; 5 187-200
- 7 Carrera M P, Ramirez-Exposito M J, Valenzuela M T, Garcia M J, Mayas M D, Martinez-Martos J M. Serum pyrrolidone carboxypeptidase activity in N-methyl-nitrosourea induced rat breast cancer. Horm Metab Res. 2003; 35 502-505
- 8 Martínez J M, Prieto I, Ramírez M J, Cueva C, Alba F, Ramírez M. Aminopeptidase activities in breast cancer tissue. Clin Chem. 1999; 45 1797-1802
- 9 Kottler M L, Starzec A, Carre M C, Lagarde J P, Martin A, Counis R. The genes for gonadotropin-releasing hormone and its receptor are expressed in human breast with fibrocystic disease and cancer. Int J Cancer. 1997; 71 595-599
- 10 Goldman M B. Thyroid diseases and breast cancer. Epidemiol Rev. 1990; 12 16-28
- 11 Hoffman D A, McConahey W M, Brinton L A, Fraumeni J F Jr. Breast cancer in hypothyroid women using thyroid supplements. JAMA. 1984; 251 616-619
- 12 Ito K, Maruchi N. Breast cancer in patients with Hashimoto’s thyroiditis. Lancet. 1975; 2 1119-1121
- 13 Morabia A, Szklo M, Stewart W, Schuman L, Thomas D B, Zacur H A. Thyroid hormones and duration of ovulatory activity in the etiology of breast cancer. Cancer Epidemiol Biomarkers Prev. 1992; 1 389-393
- 14 Shering S G, Zbar A P, Moriarty M, McDermott E W, O’Higgins N J, Smith P P. Thyroid disorders and breast cancer. Eur J Cancer Prev. 1996; 5 504-506
- 15 Vassilopoulou-Sellin R, Palmer L, Taylor S, Cooksley C S. Incidence of breast carcinoma in women with thyroid carcinoma. Cancer. 1999; 85 696-705
- 16 Silva J M, Dominguez G, Gonzalez-Sancho J M, Garcia J M, Silva J, Garcia-Andrade C, Navarro A, Muñoz A, Bonilla F. Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene. 2002; 21 4307-4316
- 17 Smyth P P, Shering S G, Kilbane M T, Murray M J, McDermott E W, Smith D F, O’Higgins N J. Serum thyroid peroxidase autoantibodies, thyroid volume, and outcome in breast carcinoma. J Clin Endocrinol Metab. 1998; 83 2711-2716
- 18 Rivera E S, Andrade N, Martin G, Melito G, Cricco G, Mohamad N, Davio C, Caro R, Bergoc R N. Induction of mammary tumors in rat by intraperitoneal inyection of NMU; histopathology and estral cycle influence. Cancer Lett. 1994; 86 223-228
- 19 Ramirez-Exposito M J, Garcia M J, Mayas M D, Carrera M P, Tsuboyama G, Martinez-Martos J M. Effects of dietary cholesterol on pyroglutamyl aminopeptidase activity in mouse frontal cortex, pituitary, and adrenal glands. Horm Metab Res. 2002; 34 431-434
- 20 Smyth P P. The thyroid, iodine and breast cancer. Breast Cancer Res. 2003; 5 235-238
- 21 Mittra I, Perrin J, Kumaoka S. Thyroid and other autoantibodies in British and Japanese women: an epidemiological study of breast cancer. Br Med J. 1976; 1(6004) 257-259
- 22 Maruchi N, Annegers J F, Kurland L T. Hashimoto’s thyroiditis and breast cancer. Mayo Clin Proc. 1976; 511 263-265
- 23 Topper Y J, Sankaran L, Chomczynski P, Prosser C, Qasba P. Three stages of responsiveness to hormones in the mammary cell. Ann N Y Acad Sci. 1986; 464 1-10
- 24 Seeger H, Huober J, Wallwiener D, Mueck A O. Inhibition of human breast cancer cell proliferation with estradiol metabolites is as effective as with tamoxifen. Horm Metab Res. 2004; 36 277-280
- 25 Koda M, Sulkowski S, Garofalo C, Kanczuga-Koda L, Sulkowska M, Surmcz E. Expression of the insulin-like growth factor I receptor in primary breast cancer lymph node metastases: correlations with estrogen receptors alfa and beta. Horm Metab Res. 2003; 35 794-801
- 26 Abramovitch S, Werner H. Functional and physical interactions between BRCA1 and p53 in transcriptional regulation of the IGF-IR gene. Horm Metab Res. 2003; 35 758-762
- 27 Russo J, Hu Y F, Yang X, Russo I H. Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr. 2000; 27 17-37
- 28 Marshall J C, Kelch R P. Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med. 1986; 315 1459-1468
- 29 Reichlin S, Martin J B, Jackson I MD. In: Jeffcoate SL, Hutchinson JSM (eds) The Endocrine Hypothalamus. New York; Academic Press 1978: 229-269
- 30 Awade A C, Cleuziat P, Gonzales T, Robert-Baudouy J. Pyrrolidone carboxyl peptidase (Pcp): an enzyme that removes pyroglutamic acid (pGlu) from pGlu-peptides and pGlu-proteins. Proteins. 1994; 20 34-51
- 31 Huirne J A, Lambalk C. Gonadotropin-releasing-hormone-receptor antagonists. Lancet. 2001; 358 1793-1803
- 32 Vanderpump M P, Tunbridge W M, French J M, Appleton D, Bates D, Clark F, Grimley Evans J, Hasan D M, Rodgers H, Tunbridge F. et al . The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf). 1995; 43 55-68
- 33 Stoll B A. Breast cancer and hypothyroidism. Cancer. 1965; 18 1431-1436
- 34 Takatani O, Okumoto T, Kosano H, Nishida M, Hiraide H, Tamakuma S. Relationship between the levels of serum thyroid hormones or estrogen status and the risk of breast cancer genesis in Japanese women. Cancer Res. 1989; 49 3109-3112
- 35 Schomburg L, Bauer K. Thyroid hormones rapidly and stringently regulate the messenger RNA levels of the thyrotropin-releasing hormone (TRH) receptor and the TRH-degrading ectoenzyme. Endocrinology. 1995; 136 3480-3485
- 36 Hsieh K P, Martin T F. Thyrotropin-releasing hormone and gonadotropin-releasing hormone receptors activate phospholipase C by coupling to the guanosine triphosphate-binding proteins Gq and G11. Mol Endocrinol. 1992; 6 1673-1681
- 37 Aragay A M, Katz A, Simon M I. The G alpha q and G alpha 11 proteins couple the thyrotropin-releasing hormone receptor to phospholipase C in GH3 rat pituitary cells. J Biol Chem. 1992; 267 24 983-24 988.
- 38 Kaiser U B, Conn P M, Chin W W. Studies of gonadotropin-releasing hormone (GnRH) action using GnRH receptor-expressing pituitary cell lines. Endocr Rev. 1997; 18 46-70
Dr. J. M. Martínez Martos
Área de Fisiología, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén
Campus Universitario ‘Las Lagunillas’ · 23071 Jaén · España
Telefon: +34(953)212600 ·
Fax: +34(953)212141
eMail: jmmartos@ujaen.es