Abstract
Background: Prior studies have provided data indicating the existence of close interaction between
pancreatic endocrine and exocrine function, but few clinical studies have explored
this relationship in depth. We compared pancreatic exocrine function non-endoscopically
in individuals with type 1 diabetes mellitus, type 2 diabetes mellitus, and normal
glucose tolerant controls, to assess the importance of local insulin production to
pancreatic exocrine function. Methods: The plasma amylase response to intravenous secretin challenge was measured in men
with type 1 diabetes mellitus (n = 5), type 2 diabetes mellitus (n = 5), and normal
controls (n = 3). Patients were characterized by their urinary excretion of c-peptide
and albumin over 24 hours. Autonomic neuropathy was non-invasively assessed by measuring
RR variation (with deep respiration on EKG). Results: Post-secretin amylase responses were generally absent with low baseline levels in
the patients with type 1 diabetes mellitus. Patients with type 2 diabetes mellitus
and controls showed similar twofold increases over baseline after secretin administration.
When normal glucose tolerant and type 2 diabetic patients were pooled and compared
against type 1 diabetes mellitus, the differences were statistically significant (p
< 0.03). Total amylase response correlated positively, but weakly, with 24 h urinary
C-peptide excretion (r = 0.507; p < 0.112), but not with glycemic control, duration
of diabetes, or indices of autonomic neuropathy. Conclusions: Patients with type 1 diabetes mellitus, but not type 2 diabetes mellitus, have reduced
pancreatic exocrine function, supporting the concept of a local paracrine effect of
insulin on pancreatic acinar cells. Further studies are needed to determine the clinical
impact of this deficiency, and whether such patients with type 1 diabetes mellitus
would benefit from therapy with pancreatic enzyme supplementation.
Key words
Plasma amylase - Secretin - Pancreatic exocrine function - Autonomic nervous system
- C-peptide - Diabetes mellitus
References
1
Jarotzky A J.
Uber die Veranderungen in der Grosse und in Bau der Pankreaszellen mit einigen Arten
der Inanition.
Virchow's Arch Patho Anat.
1899;
156
409-429
2
Williams J, Goldfine I.
The insulin-pancreatic acinar axis.
Diabetes.
1985;
34
980-986
3
Lohr M, Kloppel G.
Residual insulin positivity and pancreatic atrophy in relation to duration of chronic
type 1 (insulin-dependent) diabetes mellitus and microangiopathy.
Diabetologia.
1987;
30
757-762
4
Nakanishi K, Kobayashi T, Miyashita H. et al .
Relationships among residual β-cells, exocrine pancreas, and islet cell antibodies
in insulin-dependent diabetes mellitus.
Metabolism.
1993;
42
196-203
5
Nakanishi K, Kobayashi T, Miyashita H. et al .
Exocrine pancreatic ductograms in insulin-dependent diabetes mellitus.
Am J Gastroenterol.
1994;
89
762-766
6
Frier B M, Faber O K, Binder C, Elliott H L.
The effect of residual insulin secretion on exocrine pancreatic function in juvenile-onset
diabetes mellitus.
Diabetologia.
1978;
14
301-304
7
Lankisch P G, Manthey G, Otto J. et al .
Exocrine pancreatic function in insulin-dependent diabetes mellitus.
Digestion.
1982;
25
211-216
8
Frier B M, Adrian T E, Saunders J HB, Bloom S R.
Serum trypsin concentration and pancreatic trypsin secretion in insulin-dependent
diabetes mellitus.
Clinica Chimica Acta.
1980;
105
297-300
9
Frier B M, Saunders J HB, Wormsley K G, Bouchier I AD.
Exocrine pancreatic function in juvenile-onset diabetes mellitus.
Gut.
1976;
17
685-691
10
El Newihi H, Dooley C P, Saad C, Staples J, Zeidler A, Valenzuela J E.
Impaired exocrine pancreatic function in diabetics with diarrhea and peripheral neuropathy.
Dig Dis Sci.
1988;
33
705-710
11
Landin-Olsson M, Borgstrom A, Blom L, Sundkvist G, Lernmark A.
The Swedish Childhood Diabetes Group: Immunoreactive trypsin(ogen) in the sera of
children with recent-onset insulin-dependent diabetes and matched controls.
Pancreas.
1990;
5
241-247
12
Lorini R, Cortona L, Scotta M S, Melzi d'Eril G V, Severi F.
Exocrine pancreatic function in children and adolescents with insulin-dependent diabetes
mellitus.
Diab Res Clin Pract.
1990;
8
263-267
13
Yajnik C S, Sahasrabudhe R A, Naik S S. et al .
Exocrine pancreatic function (serum immunoreactive trypsin, fecal chymotrypsin, and
pancreatic isoamylase) in Indian diabetics.
Pancreas.
1990;
5
631-638
14
Dandona P, Elias E, Beckett A G.
Serum trypsin concentrations in diabetes mellitus.
Brit Med J.
1978;
2
1125
15
Moffat A, Marks V, Gamble D R.
Serum immunoreactive trypsin concentrations in diabetic children.
J Clin Pathol.
1980;
33
871-875
16
Moller-Petersen J, Kjaergard J J, Mourits-Andersen H T, Svendsen K N, Dideriksen K,
Ditzel J.
Serum concentration of cathodic trypsin-like immunoreactivity and pancreatic isoamylase
in insulin-dependent diabetes mellitus.
Acta Med Scand.
1982;
211
459-462
17
Adrian T E, Barnes A J, Bloom S R.
Hypotrypsinaemia in diabetes mellitus.
Clin Chim Acta.
1979;
97
213-216
18
Moles K W, Kerr J I, Armstrong E, Hayes J R, Buchanan K D.
Serum concentrations of trypsin-like immunoreactivity and pancreatic isoamylase in
insulin dependent diabetic patients.
Pancreas.
1988;
3
135-139
19
Foo Y, Rosalki S B, Ramdial L, Mikhailidis D, Dandona P.
Serum isoamylase activities in diabetes mellitus.
J Clin Pathol.
1980;
33
1102-1105
20
Junglee D, de Albarran R, Katrak A, Freedman D B, Beckett A G, Dandona P.
Low pancreatic lipase in insulin-dependent diabetics.
J Clin Pathol.
1983;
36
200-202
21
National Diabetes Data Group.
Classification and diagnosis of diabetes mellitus and the categories of glucose intolerance.
Diabetes.
1979;
28
1039-1057
22
de Fronzo R A.
The triumvirate: beta-cell, muscle, liver. A collusion responsible for non-insulin-dependent
diabetes mellitus.
Diabetes.
1988;
37
667-687
23
Brannon P M, Hirschi K, Korc M.
Effects of epidermal growth factor, insulin, and insulin-like growth factor 1 on rat
pancreatic acinar cells cultured in serum-free medium.
Pancreas.
1988;
3
41-48
24
MacGregor I L, DeVeney C, Way L W, Meyer J H.
The effect of acute hyperglycemia on meal-stimulated gastric, biliary, and pancreatic
secretion and serum gastrin.
Gastroenterology.
1976;
70
197-202
25
Unger R M, Grundy S.
Hyperglycemia as an inducer as well as a consequence of impaired islet-cell function
and insulin resistance: implications for the management of diabetes.
Diabetologia.
1985;
28
119-121
26 Arky R A.
Diet and diabetes. In: Rifkin H, Raskin P (eds) Diabetes Mellitus, volume 5. Bowie, Maryland; Robert
J. Brady Co 1981
27
Dubick M A, Conteas C N, Billy H T, Majumdar A PN, Geokas M C.
Raised serum concentrations of pancreatic enzymes in cigarette smokers.
Gut.
1987;
28
330-335
28
Florholmen J, Burhol P G, Jorde R, Waldum H L.
The effect of graded doses of secretin on serum trypsin, serum pancreatic amylase,
serum insulin, plasma somatostatin, and plasma pancreatic polypeptide in man.
Scand J Gastroenterol.
1984;
19
24-30
29
Adler G, Bedlinger C.
Hormones as regulators of pancreatic secretion in man.
Eur J Clin Invest.
1990;
20 (suppl 1)
S27-S32
30
Ceska M, Birath K, Brown B.
A new and rapid method for the clinical determination of alpha-amylase activities
in human serum and urine. Optimal conditions.
Clin Chim Acta.
1969;
26
437-444
31
Ceska M, Hultman E, Ingelman B G.
A new method for determination of alpha-amylase.
Experientia.
1969;
25
555-556
32
Ceska M, Brown B, Birath K.
Ranges of alpha-amylase activities in human serum and urine and correlations with
some other alpha-amylase methods.
Clin Chim Acta.
1969;
26
445-453
33
Polonsky K S, Rubenstein A H.
C-peptide as a measure of the secretion and hepatic extraction of insulin.
Diabetes.
1984;
33
486-494
34
Blix P M, Boddie-Willis C, Landau R L, Rochman H, Rubenstein A H.
Urinary C-peptide: an indicator of beta-cell secretion under different metabolic conditions.
J Clin Endocrinol Metab.
1982;
54
574-580
35
Krause U, von Erdmann B, Atzpodien W, Beyer J.
C-peptide measurement: a simple method for the improvement of specificity.
J Immunoassay.
1981;
2
33-44
36
Kumar M S, Schumacher O P, Deodar S D.
Measurement of serum c-peptide immunoreactivity by radioimmunoassay in insulin-dependent
diabetics.
Am J Clin Path.
1980;
74
78-82
37 Gatling W, Row D JF, Hill R D.
Microalbuminuria: an appraisal of assay techniques and urine collection procedures
for measuring urinary albumin at low concentration. In: Mogensen CE (ed) The kidney and hypertension in diabetes mellitus. Boston; Martinus
Nijhoff 1988: 41-50
38
Ewing D J, Clarke B F.
Diagnosis and management of diabetic autonomic neuropathy.
Brit Med J.
1982;
285
916-918
39 Winer B J. Statistical principles in experimental design. New York; McGraw-Hill
Book Company 1962
40
Del Rosario M AF, Fitzgerald J F, Gupta S K, Croffie J M.
Direct measurement of pancreatic enzymes after stimulation with secretin versus secretin
plus cholecystokinin.
J Pediatr Gastroenterol Nutr.
2000;
31
28-32
41
Pfefferkorn M D, Fitzgerald J F, Croffie J M, Gupta S K, Caffrey H M.
Direct measurement of pancreatic enzymes: A comparison of secretogogues.
Dig Dis Sci.
2002;
47
2211-2216
42
Sonwalkar S A, Holbrook I B, Phillips I, Kelly S M.
A prospective, comparative study of the para-aminobenzoic acid test and faecal elastase
1 in the assessment of exocrine pancreatic function.
Aliment Pharmacol Ther.
2003;
17
467-471
43
Luth S, Teyssen S, Forssmann K, Kolbel C, Krummenauer F, Singer M V.
Fecal elastase-1 determination: ‘Gold standard’ of indirect pancreatic function tests?.
Scand J Gastroenterol.
2001;
10
1092-1099
44
Icks A, Haastert B, Giani G, Rathmann W.
Low fecal elastase-1 in type 1 diabetes mellitus.
Z Gastroenterol.
2001;
29
823-830
45
Hardt P D, Krauss A, Bretz L, Porsch-Ozcurumez M, Schnell-Kretschmer H, Maser E, Bretzel R G,
Zekorn T, Klor H U.
Pancreatic exocrine function in patients with type 1 and type 2 diabetes mellitus.
Acta Diabetol.
2000;
37
105-110
46
Chey W Y, Chang T M.
Neural hormonal regulation of exocrine pancreatic secretion.
Pancreatology.
2001;
1
320-335
47
Shimizu K, Shiratori K, Hayashi N, Fujiwara T, Horikoshi H.
Effect of troglitazone on exocrine pancreas in rats with streptozotocin-induced diabetes
mellitus.
Pancreas.
2000;
21
421-426
48
Kawamori R, Katsura M, Ishida S, Yamasaki Y, Tujii M, Kawano S, Kamada T.
Subclinical exocrine pancreatic derangement in human diabetic patients evaluated from
pure pancreatic juice.
J Diabet Complic.
1995;
9
69-73
Arthur Swislocki, M. D.
Medicine Service (111E) · VA Northern California Health Care System ·
150 Muir Road · Martinez, CA 94553 · USA
Phone: +1 (925) 372-2076
Fax: +1 (925) 372-2185 ·
Email: Arthur.Swislocki@med.va.gov