Subscribe to RSS
DOI: 10.1055/s-2005-861787
Promoting or Preventing Haloaryllithium Isomerizations: Differential Basicities and Solvent Effects as the Crucial Variables
Publication History
Publication Date:
18 January 2005 (online)

Abstract
Deprotonation-triggered heavy halogen migrations should become a favorite tool in arene synthesis if their occurrence and outcome could be made predictable. Particularly attractive, though extremely rare, are stop-and-go situations where a first intermediate, generated by metalation, can be trapped at -100 °C, whereas at -75 °C halogen migration gives rise to an isomer. As shown now, one can conveniently produce the initial aryllithium species by halogen/metal interconversion in toluene at -100 °C, under conditions that preclude halogen migration, and unleash the isomerization process by adding tetrahydrofuran at -75 °C.
Key words
basicity - halogen/metal permutation - isomerizations - organometallic intermediates - solvent effects
- 1 
             
            Schlosser M. Eur. J. Org. Chem. 2001, 3975
- 2 
             
            Schlosser M. Angew. Chem. Int. Ed. 2005, 44: 376 ; Angew. Chem. 2005, 117, 380
- 3 
             
            Mongin F.Desponds O.Schlosser M. Tetrahedron Lett. 1996, 37: 2767
- 4 
             
            Mongin F.Tognini A.Cottet F.Schlosser M. Tetrahedron Lett. 1998, 39: 1749
- 5a 
             
            Schlosser M. In Organometallics in Synthesis: A Manual 2nd ed.:Schlosser M. Wiley; Chichester: 2002. p.262-265Reference Ris Wihthout Link
- 5b 
             
            Schlosser M. In Organometallics in Synthesis: A Manual 2nd ed.:Schlosser M. Wiley; Chichester: 2002. p.47Reference Ris Wihthout Link
- 7 
             
            Bennetau B.Mortier J.Moyroud J.Guesnet J.-L. J. Chem. Soc., Perkin Trans. 1 1995, 1265
- 8 
             
            Faigl F.Marzi E.Schlosser M. Chem. Eur. J. 2000, 6: 771
- 9 
             
            Tashiro M.Fukata G. J. Org. Chem. 1977, 42: 835
- 10 
             
            O’Reilly NJ.Derwin WS.Fertel LB.Lin HC. Synlett 1990, 609
- 11 
             
            Büker HH.Nibbering NMM.Espinosa D.Mongin F.Schlosser M. Tetrahedron Lett. 1997, 38: 8519
- 12 
             
            Mongin F.Marzi E.Schlosser M. Eur. J. Org. Chem. 2002, 2771
- 13 
             
            Kovaèeviæ B.Maksiæ ZB.Primorac M. Eur. J. Org. Chem. 2003, 3777
- 14 
             
            Schlosser M.Mongin F.Porwisiak J.Dmowski W.Büker HH.Nibbering NMM. Chem. Eur. J. 1998, 4: 1281
- 15 
             
            Castagnetti E.Schlosser M. Chem. Eur. J. 2002, 8: 799
- 17 
             
            Heiss C.Schlosser M. Eur. J. Org. Chem. 2003, 1569
- 18 
             
            Schlosser M.Marull M. Eur. J. Org. Chem. 2003, 4533
- 19 
             
            Shiley RH.Dickerson DR.Finger GC. J. Fluorine Chem. 1972/73, 2: 19
- 20 
             
            Lock G. Monatsh. Chem. 1959, 90: 680
- 21 
             
            Bridges AJ.Patt WC.Stickney TM. J. Org. Chem. 1990, 55: 773
- 22 
             
            Rausis T.Schlosser M. Eur. J. Org. Chem. 2002, 3351
- 23 
             
            Moyroud J.Guesnet JL.Bennetau B.Mortier J. Tetrahedron Lett. 1995, 36: 881
- 24 
             
            Mongin F.Schlosser M. Tetrahedron Lett. 1996, 37: 6551
References
When treated consecutively with butyllithium and carbon dioxide in tetrahydrofuran at -75 °C, 2-chloro-1,3-difluorobenzene is converted into the 2,6-difluorobenzoic acid (70%).
16Leroux, F.; Schlosser, M. recent results (2003) to be published.
 
    