Abstract
Arbuzov reactions of the fluorous primary iodides Rfn (CH2 )m I [Rfn = CF3 (CF2 )n-1 ; n/m = 6/2, 8/2, 8/3, 10/2] and P(OEt)3 (excess, 160 °C) give the fluorous phosphonates Rfn (CH2 )m P(O)(OEt)2 (56-59%), which are reduced with LiAlH4 to the title compounds Rfn (CH2 )m PH2 (62-78%). Fluorophilicities (CF3 C6 F11 /toluene partition coefficients) increase with the length of the Rfn moiety, decrease with the length of the (CH2 )m moiety, and decrease in the functional group sequence Rfn (CH2 )m NH2 > Rfn (CH2 )m PH2 > Rfn (CH2 )m P(O)(OEt)2 .
Key words
phosphines - phosphonates - Arbuzov reaction - fluorous - partition coefficients
References
1a
Horváth IT.
Rábai J.
Science
1994,
266:
72
1b
Horváth IT.
Kiss G.
Cook RA.
Bond JE.
Stevens PA.
Rábai J.
Mozeleski EJ.
J. Am. Chem. Soc.
1998,
120:
3133
1c
Horváth IT.
Acc. Chem. Res.
1998,
31:
641
2
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
3
Green Reaction Media in Organic Synthesis
Mikami K.
Blackwell;
Oxford:
2005.
Chap. 3.
p.in press
4
Da Costa RC.
Gladysz JA. In
Transition Metals for Organic Synthesis
Beller M.
Bolm C.
Wiley/VCH;
Weinheim:
2004.
Chap. 3.2.
5a
Schneider S.
Tzschucke CC.
Bannwarth W. In
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 10.8.
5b
Hope EG.
Stuart AM. In
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 10.9.
5c
Monflier E.
Mortreux A.
Castanet Y. In
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 10.10.
5d
Takeuchi S.
Nakamura Y. In
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 10.14.
6
Hope EG.
Stuart AM. In
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 10.7.
7
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138 ; Angew. Chem. 2004 , 116 , 5248; and references therein
8
Wende M.
Gladysz JA.
J. Am. Chem. Soc.
2003,
125:
5861
For literature that has appeared since the review in ref. 6, see:
9a
Hope EG.
Stuart AM.
West A.
J. Green Chem.
2004,
6:
345
9b
Vlád G.
Richter F.
Horváth IT.
Org. Lett.
2004,
6:
4559
10a
Alvey LJ.
Rutherford D.
Juliette JJJ.
Gladysz JA.
J. Org. Chem.
1998,
63:
6302
10b
Alvey LJ.
Meier R.
Soós T.
Bernatis P.
Gladysz JA.
Eur. J. Inorg. Chem.
2000,
1975
11a
Encyclopedia of Inorganic Chemistry
Vol. 6:
King RB.
Wiley & Sons;
New York:
1994.
p.3160
11b
Dictionary of Inorganic Compounds
Vol. 3:
Chapman & Hall;
New York:
1992.
p.3386
11c
Toy ADF. In
Comprehensive Inorganic Chemistry
Vol. 2:
Bailar JC.
Emeléus HJ.
Nyholm R.
Trotman-Dickenson AF.
Pergamon;
Oxford:
1973.
p.414
12
Bhattacharya AK.
Thyagarajan G.
Chem. Rev.
1981,
81:
415
13a
Fritzsche H.
Hasserodt U.
Korte F.
Chem. Ber.
1965,
98:
1681
13b
Cabioch JL.
Denis JM.
J. Organomet. Chem.
1989,
377:
227
13c
Alder RW.
Ganter C.
Gil M.
Gleiter R.
Harris CJ.
Harris SE.
Lange H.
Orpen AG.
Taylor PN.
J. Chem. Soc., Perkin Trans. 1
1998,
1643
14a Jing N, Boardman LD, and Pellerite MJ. inventors; US Patent 2,003,228,469.
; Chem. Abstr. 2003 , 140 , 5150
14b Enokida T. inventors; Japanese Patent 6,032,794. For earlier non-English-language patents that claim identical reactions, see:
; Chem. Abstr. 1994 , 121 , 134465
14c Tatsu H, and Tachihara K. inventors; Japanese Patent 58,180,597. See also:
; Chem. Abstr. 1984 , 100 , 211201
Other patents that describe applications of phosphonates 1 and/or 2 without reporting a synthesis:
15a Mikuni K. inventors; Japanese Patent 9,278,969.
; Chem. Abstr. 1997 , 128 , 4597
15b Maeda M, Moryama I, and Zenitani K. inventors; Japanese Patent 8,199,034.
; Chem. Abstr. 1996 , 125 , 303043
16a Tachihara K, and Tatsu H. inventors; Japanese Patent 58,210,096.
; Chem. Abstr. 1984 , 100 , 210147
16b Amimoto Y, Shinjo M, Takubo S, and Nakamae Y. inventors; Japanese Patent 2,018,430.
; Chem. Abstr. 1990 , 113 , 7893
17 Block H.-D. inventors; German Patent 2,514,640.
; Chem. Abstr. 1977 , 86 , 72867
18
Huang X.-T.
Chen Q.-Y.
J. Org. Chem.
2001,
66:
4651
19
Huang B.-N.
Wang K.-Y.
Huang W.-Y.
Prescher D.
Chinese J. Chem.
1993,
11:
169
20
Vincent J.-M.
Rabion A.
Yachandra VK.
Fish RH.
Can. J. Chem.
2001,
79:
888
21
Gladysz JA. In
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 5:
p.see Table 5-1
22a
Bhattacharyya P.
Gudmunsen D.
Hope EG.
Kemmitt RDW.
Paige DR.
Stuart AM.
J. Chem. Soc., Perkin Trans. 1
1997,
3609
22b
Langer F.
Püntener K.
Stürmer R.
Knochel P.
Tetrahedron: Asymmetry
1997,
8:
715
22c
Carroll MA.
Holmes AB.
Chem. Commun.
1998,
1395
23a
Sasse K.
Houben-Weyl, Methoden der organischen Chemie
Volume XII, Part 1:
Georg Thieme Verlag;
Stuttgart:
1963.
p.308-310
23b
Voskuil W.
Arens JF.
Rec. Trav. Chim. Pay-Bas
1963,
82:
302
23c
Shah S.
Concolino T.
Rheingold AL.
Protasiewicz JD.
Inorg. Chem.
2000,
39:
3860
24
Sakaki J.-I.
Schweizer WB.
Seebach D.
Helv. Chim. Acta
1993,
76:
2654
25a
Burton DJ.
Yang Z.-Y.
Tetrahedron
1992,
48:
189
25b
Rábai J. In
Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 9.
p.see Tables 9.1-6 and 9.2-6
26
Gladysz JA.
Emnet C.
Rábai J. In Handbook of Fluorous Chemistry
Gladysz JA.
Curran DP.
Horváth IT.
Wiley/VCH;
Weinheim:
2004.
Chap. 6.
27
Rocaboy C.
Bauer W.
Gladysz JA.
Eur. J. Org. Chem.
2000,
2621
28 Emnet, C.; Gladysz, J. A. manuscript in preparation.
29
Cammenga HK.
Epple M.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1171 ; Angew. Chem. 1995 , 107 , 1284
30 The chromatographic purification of 1 -4 is not necessary when they are used for the synthesis of 5 -8 . However, all P(OEt)3 must be removed to avoid the formation of PH3 . Some of the byproduct EtP(O)(OEt)2 can be carried along, as it gives the easily volatilized EtPH2 .