Abstract
Novel bicyclo[n.2.0]alkan-1-ols with incorporation of methyl substitution at the C6 bridgehead and C2 position on a six-member ring, and incorporation of methyl substitution at the C2 position on a five-member ring were obtained. The presence or absence of a group at these positions had a role in the preference of the major stereochemical isomer observed. Potential limitations of the cyclisation methodology was observed when the ketone was hindered (camphor), and where conjugation was present in the enolate. By contrast, another functional group, as illustrated with 1,4-cyclohexanedione mono-ethylene ketal 24, can be incorporated in the bicyclo[4.2.0]octan-1-ol, and the ketal group converted to a ketone, as in 28 , without disrupting the bicyclo[4.2.0]octan-1-ol ring.
Key words
bicyclic compounds - cyclisations - ketones - sulfoxides - sulfones
References
1
Loughlin WA.
Rowen CC.
Healy PC.
J. Chem. Soc., Perkin Trans. 2
2002,
296
2
Loughlin WA.
McCleary MA.
Org. Biomol. Chem.
2003,
1:
1347
3a
Healy PC.
Loughlin WA.
McCleary MA.
Pierens GK.
Rowen CC.
J. Phys. Org. Chem.
2002,
15:
733
3b
Loughlin WA.
McCleary MA.
Healy PC.
Acta Crystallogr., Sect. E
2003,
59:
o789
3c
Loughlin WA.
McCleary MA.
Healy PC.
Acta Crystallogr., Sect. E
2004,
60:
o1154
3d
Loughlin WA.
McCleary MA.
Healy PC.
Acta Crystallogr., Sect. E
2004,
60:
o1151
4
Loughlin WA.
Rowen CC.
Healy PC.
J. Org. Chem.
2004,
69:
5690
Recent examples:
5a
Suzuki M.
Yamada H.
Kurata K.
J. Nat. Prod.
2002,
65:
121
5b
Rundberget T.
Wilkins AL.
Phytochemistry
2002,
61:
979
5c
Momose I.
Sekizawa R.
Hosokawa N.
Iinuma H.
Matsui S.
Nakamura H.
Naganawa H.
Hamada M.
Takeuchi T.
J. Antibiot.
2000,
53:
137
5d
Yamase TH.
Umemoto K.
Ooi T.
Kusumi T.
Chem. Pharm. Bull.
1999,
47:
813
5e
Lin W.-H.
Fang J.-M.
Cheng Y.-S.
Phytochemistry
1997,
46:
169
5f
Naik JT.
Mantle PG.
Sheppard RN.
Waight ES.
J. Chem. Soc., Perkin Trans. 1
1995,
1121
5g
Okamura H.
Iwagawa T.
Nakatani M.
Bull. Chem. Soc. Jpn.
1995,
68:
3465
6
Clericuzio M.
Mella M.
Toma L.
Finzi PV.
Vidari G.
Eur. J. Org. Chem.
2002,
988
7
Kurata K.
Suzuki M.
Shiraishi K.
Taniguchi K.
Phytochemistry
1988,
27:
1321
8a
Lee-Ruff E.
Ablenas FJ.
Can. J. Chem.
1987,
65:
1663
8b
Paukstelis JV.
Kao J.-L.
J. Am. Chem. Soc.
1972,
94:
4783
9
Nemoto H.
Shiraki M.
Fukumoto K.
J. Org. Chem.
1996,
61:
1347
10
Miyashita N.
Yoshikoshi A.
Grieco PA.
J. Org. Chem.
1977,
42:
3772
11
Greene TW.
Wuts PGM.
Protective Groups in Organic Chemistry
Wiley;
New York:
1991.
12 Crystals were grown for example by the slow evaporation of a hexane-EtOAc (90:10) solution of pure 13 or 14 , and from the slow diffusion of Et2 O into a solution of 13 or 14 in CH2 Cl2 .
13
Loughlin WA.
McCleary MA.
Healy PC.
Acta Crystallogr., Sect. E
2002,
58:
o1280
14a
Hutchinson JH.
Li DLF.
Money T.
Palme M.
Agharahimi MR.
Albizati KF.
Can. J. Chem.
1991,
69:
558
14b
Vaillancourt V.
Agharahimi MR.
Sundram UN.
Richou O.
Faulkner DJ.
Albizati KF.
J. Org. Chem.
1991,
56:
378
15
Hunter R.
Carlton L.
Cirillo PF.
Michael JP.
Simon CD.
Walter DS.
J. Chem. Soc., Perkin Trans. 1
1989,
1631
16
Kende AS.
Fludzinski P.
Hill JH.
Swenson W.
Clardy J.
J. Am. Chem. Soc.
1984,
106:
3551
17 The bicyclo[2.2.2]octanones 34 -36 were characterised by interpretation of spectral data from 1 H and 13 C 1D NMR and gCOSY, gHSQC and gHMBC 2D NMR, FT-IR spectroscopy and mass spectrometry. With four stereocentres present, eight racemic diastereomers could potentially form in a non-selective reaction process. However the individual stereochemistries of bicyclo[2.2.2]octanones 34 -36 were unable to be assigned. Two-dimensional ROESY NMR spectra of 34 -36 provided ambiguous information. Likewise 1 H-1 H coupling information drawn from the 1 H NMR spectra was inconclusive.