Synlett 2005(4): 572-576  
DOI: 10.1055/s-2005-862384
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Comment on the Gurjar Mechanism for Alkene Isomerization Using the Grubbs Olefin Metathesis Catalysts

Chris D. Edlina, James Faulknerb, David Fengasb, Christopher K. Knightb, Jeremy Parkerc, Ian Preeceb, Peter Quayle*b, Stuart N. Richardsd
a Medicinal Chemistry 1, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
b Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
Fax: +44(161)2754598; e-Mail: peter.quayle@manchester.ac.uk;
c AstraZeneca Process R&D, Avlon Works, Severn Road, Hallen, Bristol BS10 7ZE, UK
d Avecia, P.O. Box 42, Hexagon House, Blackley, Manchester M9 8ZS, UK
Further Information

Publication History

Received 22 August 2004
Publication Date:
22 February 2005 (online)

Abstract

The mechanism of allylic alcohol isomerization in the presence of the Grubbs metathesis catalysts is discussed.

    References

  • 1 Quayle P. Fengas D. Richards S. Synlett  2003,  1797 
  • 2 Clark AJ. Chem. Soc. Rev.  2002,  31:  1 
  • 3 Confer: Pintauer T. McKenzie B. Matyjaszewski K. ACS Symposium Series  2003,  854:  130 
  • 4 Hu Y.-J. Dominique R. Das SK. Roy R. Can. J. Chem.  2000,  78:  838 
  • 5 Alcaide B. Almendros P. Alonso JM. Aly MF. Org. Lett.  2001,  3:  3781 
  • For sporadic reports of olefin isomerisation using catalysts such as 1a and 1b see:
  • 6a Kotha S. Mandal K. Tetrahedron Lett.  2004,  45:  1391 
  • 6b Peczuh MW. Snyder NL. Tetrahedron Lett.  2003,  44:  4057 
  • 6c Lee CW. Grubbs RH. Org. Lett.  2000,  2:  2145 
  • 6d Maynnard HD. Grubbs RH. Tetrahedron Lett.  1999,  40:  4137 
  • 6e Edwards SD. Lewis T. Taylor JK. Tetrahedron Lett.  1999,  40:  4267 
  • 6f Fürstner A. Thiel OR. Ackermann L. Schanz H.-J. Nolan SP. J. Org. Chem.  2000,  65:  2204 
  • 6g Hoye TR. Promo MA. Tetrahedron Lett.  1999,  40:  1429 
  • 6h For a recent review see: Lehman SE. Schwendeman JE. O’Donnell PM. Wagener KB. Inorg. Chim. Acta  2003,  345:  190 
  • 6i Bourgeois D. Pancrazi A. Nolan SP. Prunet J. J. Organomet. Chem.  2002,  643-644:  247 
  • 7a Schmidt B. Angew. Chem. Int. Ed.  2003,  42:  4996 
  • 7b Schmidt B. Eur. J. Org. Chem.  2003,  68:  816 
  • 7c Alcaide B. Almendros P. Alonso JM. Chem.-Eur. J.  2003,  9:  5793 
  • 7d Cadot C. Dalko PI. Cossy J. Tetrahedron Lett.  2002,  43:  1839 
  • 7e Sutton AE. Seigal BA. Finnegan DF. Snapper ML. J. Am. Chem. Soc.  2002,  124:  13390 
  • 7f Wipf P. Rector SR. Takahashi H. J. Am. Chem. Soc.  2002,  124:  14848 
  • 7g Greenwood ES. Parsons PJ. Young MJ. Synth. Commun.  2003,  33:  223 
  • 7h Arisawa M. Terada Y. Nakagawa M. Nishida A. Angew. Chem. Int. Ed.  2002,  41:  4732 
  • 7i Ammar HB. Le Nôtre J. Salem M. Kaddachi MT. Dixneuf PH. J. Organomet. Chem.  2002,  662:  63 
  • 8a Gurjar MK. Yakambram P. Tetrahedron Lett.  2001,  42:  3633 
  • 8b

    Whilst metallacyclobutanes are universally accepted as intermediates [9] (or possibly transition states [10] ) in metathesis reactions their isolation in the case of Ru is hampered by their lability. [11]

  • 8c To our knowledge there are no reports of β-hydride elimination reactions in the sense depicted by Gurjar (i.e. exocyclic to the metallacycle) in Scheme 2. However, endocyclic β-alkyl, β-hydride and β-silyl elimination reactions of ruthenacyclobutanes have been documented or inferred. β-H eliminations in related iridium complexes also proceed via cleavage of an endocyclic C-H bond. See: Fryzuk MD. Gao X. Rettig SJ. J. Am. Chem. Soc.  1995,  117:  3106 
  • 8d For a review of the early literature see: Feldman J. Schrock RR. Prog. Inorg. Chem.  1991,  39:  1 
  • 9 See: Suresh CH. Koga N. Organometallics  2004,  23:  76 ; and references therein
  • 10 Adlhart C. Hinderling C. Baumann H. Chen P. J. Am. Chem. Soc.  2000,  122:  8204 
  • See:
  • 11a Diversi P. Ingrosso G. Lucherini A. Marchetti F. Adovasio V. Nardelli M. J. Chem. Soc., Dalton Trans.  1991,  203 
  • 11b Andersen RA. Jones RA. Wilkinson G. J. Chem. Soc., Dalton Trans.  1978,  446 ; for examples of relatively stable complexes
  • 12a McNeill K. Andersen RA. Bergman RG. J. Am. Chem. Soc.  1997,  119:  1244 
  • 12b Simal F. Demenceau A. Noels AF. Knowles DRT. O’Leary S. Maitlis PM. Gusev O. J. Organomet. Chem.  1998,  558:  163 
  • 12c Pietraszuk C. Fischer H. Chem. Commun.  2000,  2463 
  • 13a Davies NR. Nature (London)  1964,  201:  490 
  • 13b Harrod JF. Chalk AJ. J. Am. Chem. Soc.  1964,  86:  1776 
  • 13c Cramer R. J. Am. Chem. Soc.  1966,  88:  2272 
  • 13d Hallman DS. Evans D. Osborn JA. Wilkinson G. Chem. Commun.  1967,  305 
  • 13e Casey CP. Clifford RC. J. Am. Chem. Soc.  1973,  95:  2240 
  • 14a Redox isomerization of allylic alcohols is well documented. For a recent example see: Cadierno V. García-Garrido SE. Gimeno J. Chem. Commun.  2004,  232 
  • 14b For pertinent reviews see: Uma R. Crévisy C. Grée R. Chem. Rev.  2003,  103:  27 
  • 14c van der Drift RC. Bouwman E. Drent E. J. Organomet. Chem.  2002,  650:  1 
  • 14d For Ru see: Slugovc C. Rüba E. Schmid R. Kirchner K. Organometallics  1999,  18:  4230 ; and references cited therein
  • 15a Trichloroacetae 2b was prepared from 2-cyclohexen-1-ol-2,6,6,-d 3 (>95% d-incorporation at C-6 and 60% incorporation at C-2). See: Braem D. Guelacar FD. Burger U. Buchs A. Org. Mass Spectrom.  1979,  14:  609 
  • 15b Trichloroacetate 2c was prepared from 2-cyclohenen-1-ol-1-d (having >98% d-incorporation at C-1). See: Goering HL. Paisley SD. J. Org. Chem.  1987,  52:  943 
  • 15c

    We have yet to rule out the possibility that this ‘isomerization’ reaction might proceed via an elimination-intermolecular Kharasch sequence. Experiments are in hand to differentiate between these alternate pathways.

  • 16a Sassson Y. Blum J. Tetrahedron Lett.  1971,  12:  2167 
  • 16b Sasson Y. Blum J. J. Chem. Soc., Chem. Commun.  1974,  309 
  • 16c Sasson Y. Rempel GL. Can. J. Chem.  1974,  52:  3825 
  • 16d For a review see: Bäckvall J.-E. J. Organomet. Chem.  2002,  652:  105 
  • 16e For recent synthetic applications see: Edwards MG. Jazzar RFR. Paine BM. Shermer DJ. Whittlesey MK. Williams JMJ. Edney DD. Chem. Commun.  2004,  90 
  • 16f Cho CS. Kim BT. Kim T.-J. Shim SC. Tetrahedron  2003,  59:  7997 
  • 16g Cho CS. Kim BT. Kim T.-J. Shim SC. J. Org. Chem.  2001,  66:  9020 
  • 17a Alcaide B. Almendros P. Alonso JM. Tetrahedron Lett.  2003,  44:  8693 
  • 17b The in situ generation of hydrido ruthenium complexes, which are themselves catalysts for olefin isomerization, has been reported. See: Schmidt B. Pohler M. Org. Biomol. Chem.  2003,  1:  2512 
  • 17c Schmidt B. Chem. Commun.  2004,  742 ; and references therein
  • 18 Mizushima E. Yamaguchi M. Yamagishi T. J. Mol. Catal. A: Chem.  1999,  148:  69 
  • 19a Louie J. Bielawski CW. Grubbs RH. J. Am. Chem. Soc.  2001,  123:  11312 
  • 19b

    in this study Grubbs reported the 1,2-addition of hydride (rather than conjugate reduction) to an α,β-unsaturated ketone when treated to propan-2-ol, H2 and NaOH in the presence of post-metathesis catalyst.

  • 20a Prepared by the addition of vinyl magnesium bromide to benzaldehyde-1-d 1. See: Eberle MK. Kahle GG. J. Am. Chem. Soc.  1977,  99:  6038 
  • 20b See also: Gajewski JJ. Bocian W. Harris NJ. Olson LP. Gajewski JP. J. Am. Chem. Soc.  1999,  121:  326 
  • 20c Grée has reported that various hydrido ruthenium complexes effect the same isomerization reaction albeit with much higher levels of deuterium incorporation (up to 90% retention). The degree of d-incorporation is ligand dependent. We thank Prof. Grée for spectral data of 12a. See: Uma R. Davies MK. Crévisy C. Grée R. Eur. J. Org. Chem.  2001,  3141 
  • 20d Motherwell has also reported a similar outcome using rhodium catalysts, see: Gazzard LJ. Motherwell WB. Sandham DA. J. Chem. Soc., Perkin Trans. 1  1999,  979 
  • 21 Laxmi YR. Bäckvall J.-E. Chem. Commun.  2000,  611 
  • 22a Trnka TM. Morgan JP. Sanford MS. Wilhelm TE. Scholl M. Choi T.-L. Ding S. Day MW. Grubbs RH. J. Am. Chem. Soc.  2003,  125:  2546 
  • 22b Hong SH. Day MW. Grubbs RH. J. Am. Chem. Soc.  2004,  126:  7414 
  • 23a The exact nature of the decomposition products arising from the Grubbs’ catalysts has been the subject of some debate. A by-product, 20, formed in the preparation of ruthenium carbene complexes (originally misassigned by Fürstner et al. has now been fully characterized by Grubbs and Mol: Dinger MB. Mol JC. Eur. J. Inorg. Chem.  2003,  2827 
  • 23b Fürstner A. Krause H. Ackermann L. Gabor B. Goddard R. Lehmann CW. Mynott R. Stelzer F. Thiel OR. Chem.-Eur. J.  2001,  7:  3236 
  • 23c Dinger MB. Mol JC. Organometallics  2003,  22:  1089 
  • 23d Werner has also noted a number of deactivation pathways for Ru carbene complexes. See: Werner H. Grünwald C. Stüer W. Wolf J. Organometallics  2003,  22:  1558 
  • 24 Ulman M. Grubbs RH. J. Org. Chem.  1999,  64:  7202 
  • Similar suspicions have been raised in the area of polymer chemistry. See, for example:
  • 25a Delaude L. Delfosse S. Richel A. Demonceau A. Noels AF. Chem. Commun.  2003,  1526 
  • 25b Simal F. Delfosse S. Demonceau A. Noels AF. Denk K. Kohl FJ. Weskamp T. Herrmann WA. Chem.-Eur. J.  2002,  8:  3047 
  • 25c Opstal T. Verpoort F. Angew. Chem. Int. Ed.  2003,  42:  2876 
  • 26 See also: Wu Z. Nguyen ST. Grubbs RH. Ziller JW. J. Am. Chem. Soc.  1995,  117:  5503 
  • 27 Schmidt has recently reported the partitioning of reactivity between the complexes 1a and 1b in RCM/ATRC reactions. In keeping with our results these workers found that the more robust second generation catalyst, 1b, did not catalyze effectively ATRC reactions. See: Schmidt B. Pohler M. Costisella B. J. Org. Chem.  2004,  69:  1421 
  • 28 Sworen JC. Pawlow JH. Case W. Lever J. Wagener KB. J. Mol. Catal. A: Chem.  2003,  194:  69 
  • 29 Alcaide A. Almendros P. Alonso JM. Tetrahedron Lett.  2003,  44:  8693 ; see ref. 16
  • Mechanistic studies:
  • 30a For Ru see: McGrath DM. Grubbs RH. Organometallics  1994,  13:  224 
  • 30b See also: Trost BM. Kulawiec RJ. J. Am. Chem. Soc.  1993,  115:  2027 
  • 30c For Rh see: Bianchini C. Meli A. Oberhauser W. New. J. Chem.  2001,  25:  11 
  • 30d See further: Bergens SH. Bosnich B. J. Am. Chem. Soc.  1991,  113:  958 
  • For recent discussions see:
  • 31a Schmidt B. Eur. J. Org. Chem.  2004,  1865 
  • 31b Alcaide B. Almendros P. Chem.-Eur. J.  2003,  9:  1259