References
1
Goldberg O.
Luini A.
Teichberg VI.
J. Med. Chem.
1983,
26:
39 ; and references cited therein
2a
Orlek BS.
Wadsworth H.
Wyman P.
Hadley MS.
Tetrahedron Lett.
1991,
1241
2b
Kende AS.
Luzzio MJ.
Mendoza JS.
J. Org. Chem.
1990,
918
3a
Bashiardes G.
Safir I.
Mohamed AS.
Barbot F.
Laduranty J.
Org. Lett.
2003,
5:
4915
3b
Grigg R.
McMeekin P.
Sridharan V.
Tetrahedron
1995,
51:
13347
3c
Grigg R.
Tetrahedron: Asymmetry
1995,
6:
2475
4
Vogel AI.
Practical Organic Chemistry
3rd ed.:
Longmans;
London:
1956.
p.452
5
De Freitas JR.
Srivastava RM.
Da Silva WJP.
Cottier L.
Sinou D.
Carbohydr. Res.
2003,
338:
673 ; and references cited therein
6
Kozikowski AP.
Lee L.
J. Org. Chem.
1990,
55:
863
7
Ferrier RJ. In
Carbohydrates
Pigman W.
Horton D.
Academic Press;
New York:
1980.
p.843-880
8
Toshima K.
Ishizuka T.
Matsuo G.
Nakata M.
Synlett
1995,
306
9
Thompson A.
Wolfrom ML.
Pacsu E. In Methods in Carbohydrate Chemistry
Vol. 2:
Whistler RL.
Wolfrom ML.
Academic Press;
New York:
1963.
p.215-220
10
Fraser-Reid B.
Walker DL.
Can. J. Chem.
1980,
58:
2694
11
Clark D.
Tetrahedron
2000,
56:
6181
12 All compounds were purified by the appropriate techniques and fully characterized by spectroscopic means.
Typical Experimental Procedure - Synthesis of Methyl-(1
S
,3
R
,3a
R
,7a
S
)-4-ethoxy-6-hydroxymethyl-7-oxo-1-phenyl-octahydro-pyrano[3,4-
c
]pyrrole-3-carboxylate (
9a).
To a solution of methyl-N-benzylideneglycinate (7a, 0.23 g, 1.3 mmol, 1.5 equiv) in 20 mL of dry MeCN in a two-necked, round-bottomed flask equipped with a magnetic stirring bar and a reflux condenser were added enone 5 (0.15 g, 0.9 mmol), AgOAc (0.18 g, 1.05 mmol, 1.2 equiv), and 0.16 mL of DBU (1.05 mmol, 1.2 equiv). The mixture was stirred at r.t. during 4 h in absence of light (flask covered in aluminium foil). After filtration on celite and evaporation of the solvent under reduced pressure, the resulting brown oil was dissolved in 15 mL of CH2Cl2 and washed with 20 mL of NH4Cl solution. The organic layer was then dried over MgSO4, and the solvent was removed under reduced pressure. The resulting oil was purified by flash chromatography on silica gel (EtOAc-pentane 70:30, R
f
= 0.30) to provide 9a in 60% yield as a viscous colorless oil. 1H NMR and 13C NMR spectroscopy revealed two conformers.
Major conformer: 1H NMR (300 MHz, CDCl3): δ = 1.21 (t, J = 7.1 Hz, 3 H, ethyl-CH3), 2.86 (dd, J
3a,7a = 9.4 Hz, J
3a,3 = 9.0 Hz, 1 H, H-3a), 3.07 (dd, J
7a,3a = 9.4 Hz, J
7a,1 = 5.7 Hz, 1 H, H-7a), 3.51-3.98 (m, 5 H, H-5, CH2-O and ethyl-CH2), 3.77 (s, 3 H, ester-CH3), 4.04 (d, J
3,3a = 9.0 Hz, 1 H, H-3), 4.69 (d, J
1,7a = 5.7 Hz, 1 H, H-1), 5.12 (br s, 1 H, H-4α), 7.25-7.46 (m, 5 H, H-arom.) ppm. 13C NMR (CDCl3): δ = 14.7 (ethyl-CH3), 48.3 (C-3a), 52.5 (ester-CH3), 55.7 (C-7a), 62.1 (ethyl-CH2), 62.7 (C-3), 63.0 (C-1), 63.8 (CH2-O), 76.8 (C-6), 97.0 (C-4), 124.9-139.3 (C-Ar), 172.8 (ester C=O), 207.4 (C-7) ppm. IR = 3362 (OH), 3059 (arom. C-H), 2972, 2929, 2905 (CHn), 1736 (C=O ester), 1715 (C=O ketone), 1606 (arom. C=C), 1180, 1132, 1063 (C-O), 736 (arom. C-H), 702 (arom. C-H) cm-1.
Minor conformer: 1H NMR (300MHz, CDCl3): δ = 1.17 (t, J = 7.1 Hz, 3 H, ethyl-CH3), 3.12-3.15 (m, 1 H, H-3a, 3.25 (dd, J
7a,3a = 7.7 Hz, J
7a,1 = 7.2 Hz, 1 H, H-7a), 3.51-3.98 (m, 5 H, H-5, CH2-O and ethyl-CH2), 3.86 (s, 3 H, ester-CH3), 4.19 (d, J
3,3a = 9.4 Hz, 1 H, H-3), 4.41 (d, J
1,7a = 7.2 Hz, 1 H, H-1), 5.12 (br s, 1 H, H-4α), 7.25-7.46 (m, 5 H, H-arom.) ppm. 13C NMR (CDCl3): δ = 14.2 (ethyl-CH3), 45.9 (C-3a), 52.3 (ester-CH3), 52.4 (C-7a), 60.9 (C-1), 62.0 (ethyl-CH2), 63.7 (CH2-O), 65.9 (C-3), 75.5 (C-6), 96.1 (C-4), 124.9-139.3 (C-Ar), 172.2 (ester C=O), 207.4 (C-7).