References
<A NAME="RU34204ST-1">1</A>
Hudlicky M.
Oxidations in Organic Chemistry
American Chemical Society;
Washington DC:
1990.
<A NAME="RU34204ST-2">2</A>
Degonneau M.
Kagan ES.
Mikhailov VI.
Rozantsev EG.
Sholle VD.
Synthesis
1984,
895
<A NAME="RU34204ST-3">3</A>
LD50 (oral rat, 4-hydroxy-TEMPO) = 1053 mg Kg21; CAS database.
<A NAME="RU34204ST-4">4</A>
de Nooy A.
Besemer A.
van Bekkum H.
Synthesis
1996,
35:
1153
<A NAME="RU34204ST-5">5</A>
Anelli PL.
Biffi C.
Montanari F.
Quici S.
J. Org. Chem.
1987,
52:
2559
<A NAME="RU34204ST-6">6</A>
Zhao M.
Li J.
Mano E.
Song Z.
Tschaen DM.
Grabowski EJJ.
Reider PJ.
J. Org. Chem.
1999,
64:
2564
<A NAME="RU34204ST-7">7</A>
Einhorn J.
Einhorn C.
Ratajczak F.
Pierre JL.
J. Org. Chem.
1996,
61:
7452
<A NAME="RU34204ST-8A">8a</A>
Cella JA.
Kelley JA.
Kenehan EF.
J. Org. Chem.
1975,
40:
1860
<A NAME="RU34204ST-8B">8b</A>
Cella JA.
McGrath JP.
Kelley JA.
El Soukkary O.
Hilpert L.
J. Org. Chem.
1977,
42:
2077
<A NAME="RU34204ST-9A">9a</A>
Anelli PL.
Biffi C.
Montanari F.
Quici S.
J. Org. Chem.
1989,
54:
2970
<A NAME="RU34204ST-9B">9b</A>
Anelli PL.
Montanari F.
Quici S.
Org. Synth.
1990,
69:
212
<A NAME="RU34204ST-10A">10a</A>
Heeres A.
van Doren HA.
Gotlieb KF.
Bleeker IP.
Carbohydr. Res.
1997,
299:
221
<A NAME="RU34204ST-10B">10b</A>
Bolm C.
Fey T.
Chem. Commun.
1999,
1795
<A NAME="RU34204ST-10C">10c</A>
Brunel D.
Lentz P.
Sutra P.
Fajula F.
Nagy JB.
Stud. Surf. Sci. Catal.
1999,
125:
237
<A NAME="RU34204ST-10D">10d</A>
Verhoef MJ.
Peters JA.
van Bekkum H.
Stud. Surf. Sci. Catal.
1999,
125:
465
<A NAME="RU34204ST-10E">10e</A>
Ciriminna R.
Blum J.
Avnir D.
Pagliaro M.
Chem. Commun.
2000,
1441
<A NAME="RU34204ST-10F">10f</A>
Fey T.
Fischer H.
Bachmann S.
Albert K.
Bolm C.
J. Org. Chem.
2001,
66:
8154
<A NAME="RU34204ST-11">11</A>
Dijksman A.
Arends IWCE.
Sheldon RA.
Chem. Commun.
2000,
271
<A NAME="RU34204ST-12A">12a</A>
Cornils B.
Catalysis from A to Z: A Concise Encyclopedia
Wiley-VCH;
Weinheim:
2000.
<A NAME="RU34204ST-12B">12b</A>
Czarnik AW.
Solid Phase Organic Synthesis
Wiley;
New York:
2001.
<A NAME="RU34204ST-13">13</A>
Dijksman A.
Arends IWCE.
Sheldon RA.
Chem. Commun.
2000,
271
<A NAME="RU34204ST-14">14</A>
Tanyeli C.
Gümüs A.
Tetrahedron Lett.
2003,
44:
1639
<A NAME="RU34204ST-15">15</A>
Pozzi C.
Cavazzini M.
Quici S.
Benaglia M.
Dell’Anna G.
Org. Lett.
2004,
6:
441
<A NAME="RU34204ST-16">16</A>
Wasserscheid P.
Welton T.
Ionic Liquids in Synthesis
Wiley-VCH;
Weinheim:
2003.
<A NAME="RU34204ST-17">17</A>
Wierzbicki A.
Davis JH.
Proceedings of the Symposium on Advances in Solvent Selection and Substitution for
Extraction, 5-9 March 2000
AIChE;
New York:
2000.
<A NAME="RU34204ST-18">18</A>
Fuller RT.
Carlin HC.
de Long HC.
Haworth D.
J. Chem. Soc., Chem. Commun.
1994,
299
<A NAME="RU34204ST-19">19</A>
General Procedure for the Attachment of One TEMPO Unit.
To a stirred solution of 4-hydroxy-2,2,6,6-tetramethyl-piperdine-1-oxyl (1, 0.86 g, 5 mmol) and chloroactic acid (0.40 g, 5 mmol) in CH2Cl2 (25 mL) at 0 °C under argon, DCC (1.03 g, 5 mmol) and DMAP (0.15 g, 1.25 mmol) were
added and the reaction mixture was stirred for 12 h at r.t. The solid materials formed
were filtered off and the filtrate was washed with 1 M HCl (5 mL) followed by sat.
NaHCO3 (10 mL) and brine (10 mL). The organic phase was dried over MgSO4 and evaporated under reduced pressure, and then filtered through a short flash chromatography
(EtOAc-hexanes 1:4) providing chloroacetic acid 2,2,6,6-tetra-methyl-1-oxy-piperidin-4-yl
ester(2) as a red powder (1.14 g, 92%). Then 1-methylimidazole (0.46 g, 5.6 mmol) was added
to a solution of 2 (1.00 g, 4 mmol) in MeCN (30 mL) and the resulting solution was stirred for 48 h
at 80 °C. After that, the solvent was removed in vacuum and the residue was washed
with acetone to give 3 as a light red powder (1.30 g, 98%). Compound 4 was prepared by stirring 3 (1.00 g, 3 mmol) with KPF6 (0.66 g, 3.6 mmol) in acetone (30 mL) at r.t. for 48 h. After this, the insoluble
by-products were filtered off and the acetone was removed in vacuum to afford 4 as a pink powder (1.27 g, 96%). As excepted, this charged TEMPO 4 is preferentially soluble in [bmim]PF6 and insoluble in water. All these novel compounds were stable in air and characterized
by 1H NMR, 13C NMR, FTIR spectro-metry, mass spectrometry and elemental analyses ref. 20.
<A NAME="RU34204ST-20">20</A>
To samples containing nitroxyl radical residues was added one drop of neat phenylhydrazine
to the NMR sample tube immediately prior to analysis in order to reduce in situ the
paramagnetic center to the corresponding hydroxylamine species.
Compound 2: mp 55 °C. 1H NMR (400 MHz, CDCl3): δ = 5.14 (s, 1 H), 4.10 (s, 2 H), 1.97 (t, 2 H, J = 0.8 Hz), 1.83 (t, 2 H, J = 1.2 Hz), 1.28 (s, 6 H), 1.14 (s, 6 H). 13C NMR (400 MHz, CDCl3): δ = 20.37, 31.93, 41.21, 43.29, 68.47, 166.79. IR (KBr, selected data): 1751.93,
1204.23, 1161.84, 791.67 cm-1. Anal. Calcd for C11H19ClNO3: C, 53.12; H, 7.70; Cl, 14.25; N, 5.63. Found: C, 53.17; H, 7.74; N, 5.67. MS (ESI):
m/z calcd [M]+: 248.73; found: 248.40.
Compound 3: mp 191 °C. 1H NMR (400 MHz, DMSO): δ = 9.14 (s, 1 H), 7.54 (s, 1 H), 7.36 (s, 1 H), 5.24 (s, 2
H), 5.04 (s, 3 H), 3.90 (s, 3 H), 1.90 (t, 2 H, J = 0.8 Hz), 1.50 (t, 2 H, J = 1.2 Hz), 1.10 (s, 6 H), 1.07 (s, 6 H). 13C NMR (400 MHz, DMSO): δ = 166.43, 137.73, 123.66, 123.27, 68.92, 57.93, 49.54, 43.37,
35.89, 32.06, 20.32. IR (KBr, selected data): 1745.13, 1175.20, 1221.89 cm-1. Anal. calcd for C15H25ClN3O3: C, 54.46; H, 7.62; N, 12.70. Found: C, 54.58; H, 7.59; N, 12.72. MS (FAB): m/z calcd [M]+: 295.38; found: 294.7.
Compound 4: mp 53 °C. 1H NMR (400 MHz, DMSO): δ = 9.04 (s, 1 H), 7.36 (s, 1 H), 7.27 (s, 1 H), 5.20 (s, 2
H), 5.04 (s, 3 H), 3.89 (s, 3 H), 1.91 (t, 2 H, J = 0.8 Hz), 1.50 (t, 2 H, J = 1.2 Hz), 1.10 (s, 6 H), 1.08 (s, 6 H). 13C NMR (400 MHz, DMSO): δ = 166.38, 137.69, 123.68, 123.29, 69.09, 58.03, 49.59, 43.41,
35.87, 32.09, 20.37. IR (KBr, selected data): 1745.13, 1225.18, 1178.83, 839.76 cm-1. Anal. calcd for C15H25F6N3O3P: C, 40.91; H, 5.72; N, 9.54; P, 7.03. Found: C, 40.81; H, 5.62; N, 9.30; P, 7.23.
MS (FAB): m/z calcd [M]+: 295.38; found: 294.9.
<A NAME="RU34204ST-21">21</A>
Anelli PL.
Biffi C.
Montanari F.
Quici S.
J. Org. Chem.
1987,
52:
2559
<A NAME="RU34204ST-22">22</A>
General Procedure for all Oxidation Runs.
An alcohol (0.80 mmol), 4 (0.008 mmol, 3.54 mg) and dodecane (0.24 mmol) used as the internal standard in GC-analysis
were dissolved in [bmim]PF6 (2 mL) followed by 0.16 mL aq KBr (0.5 M). After cooling the mixture at 0 °C, 2.7
mL of aq NaOCl diluted to a concentration of 0.37 M and buffered to pH 8.6 by NaHCO3 was added and the reaction mixture stirred vigorously. After the oxidation, the IL
phase was separated and the resultant carbonyl compounds could easily be separated
from the IL medium by simple extraction with Et2O (4 × 5 mL), which was analyzed by GC. The IL containing catalyst can subsequently
be re-used for a new reaction cycle. The combined organic extracts were dried with
Na2SO4, and evaporated to dryness. The residue was purified by silica gel flash chromatography
eluting with EtOAc-petroleum ether.