References
For recent reviews on organocatalysis involving hydrogen bonding, see:
1a
Pihko PM.
Angew. Chem. Int. Ed.
2004,
43:
2062
1b
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5138
For recent reviews on organocatalysis by proline and proline derivatives, see:
2a
List B.
Acc. Chem. Res.
2004,
37:
548
2b
Notz W.
Tanaka F.
Barbas CF.
Acc. Chem. Res.
2004,
37:
580
2c
List B.
Tetrahedron
2002,
58:
5573
3a
Huang Y.
Rawal VH.
J. Am. Chem. Soc.
2002,
124:
9662
3b
Huang Y.
Unni AK.
Thadani AN.
Rawal VH.
Nature
2003,
424:
146
3c
McDougal NT.
Schaus SE.
J. Am. Chem. Soc.
2003,
125:
12094
3d
Thadani AN.
Stankovic AR.
Rawal VH.
Proc. Natl. Acad. Sci., U.S.A.
2004,
101:
5839
3e
Uraguchi D.
Sorimachi K.
Terada M.
J. Am. Chem. Soc.
2004,
126:
11804 ; and references therein
4a
Vachal P.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
10012
4b
Wenzel AG.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
12964
4c
Wenzel AG.
Jacobsen EN.
Synlett
2003,
1919
4d
Joly GD.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
4102
For a review, see:
5a
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
5b For thiourea as ligand in transition metal-catalyzed reactions, see: Yang D.
Chen Y.-C.
Zhu N.-Y.
Org. Lett.
2004,
6:
1577 ; and references therein
6a
Okino T.
Hoashi Y.
Takemoto Y.
J. Am. Chem. Soc.
2003,
125:
12672
6b
Okino T.
Nakamura S.
Furukawa T.
Takemoto Y.
Org. Lett.
2004,
6:
625
6c
Okino T.
Hoashi Y.
Furukawa T.
Xu X.
Takemoto Y.
J. Am. Chem. Soc.
2005,
127:
119
6d Achiral F-C alkylation with nitroolefin, see: Dessole G.
Herrera RP.
Ricci A.
Synlett
2004,
2374
7a
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Chem. Pharm. Bull.
2004,
52:
477
7b
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Tetrahedron Lett.
2004,
45:
5589
For a review on enantioselective 1,4-addition of thiol to activated olefin, see:
8a
Fehr C.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2566
8b For recent examples, see: Nishimura K.
Ono M.
Nagaoka Y.
Tomioka K.
J. Am. Chem. Soc.
1997,
119:
12974
8c
Emori E.
Arai T.
Sasai H.
Shibashaki M.
J. Am. Chem. Soc.
1998,
120:
4043
8d
Kanemasa S.
Oderaotoshi Y.
Wada E.
J. Am. Chem. Soc.
1999,
121:
8675
8e
Kobayashi S.
Ogawa C.
Kawamura M.
Sugiura M.
Synlett
2001,
983
8f
McDaid P.
Chen Y.
Deng L.
Angew. Chem. Int. Ed.
2002,
41:
338
8g
Nishimura K.
Tomioka K.
J. Org. Chem.
2002,
67:
431
8h
Matsumoto K.
Watanabe A.
Uchida T.
Ogi K.
Katsuki T.
Tetrahedron Lett.
2004,
45:
2385
9a For a recent review on asymmetric catalysis with modified cinchona alkaloids, see: Tian S.-K.
Chen Y.
Hang J.
Tang L.
McDaid P.
Deng L.
Acc. Chem. Res.
2004,
37:
621
9b For late examples, see: Zhu C.
Shen X.
Nelson SG.
J. Am. Chem. Soc.
2004,
126:
5352
9c
Li H.
Wang Y.
Tang L.
Deng L.
J. Am. Chem. Soc.
2004,
126:
9906
9d
Saaby S.
Bella M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
8120
9e
Acocella MR.
Mancheno OG.
Bella M.
Jørgensen KA.
J. Org. Chem.
2004,
69:
8165
10
Brunner H.
Bügler J.
Nuber B.
Tetrahedron: Asymmetry
1995,
6:
1699
11a
Goodman SN.
Jacobsen EN.
Adv. Synth. Catal.
2002,
344:
953
11b For enantioselective 1,4-addition with unsaturated imide, see: Sammis GM.
Danjo H.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
9928 ; and references therein
11c We failed to get the desired Michael addition product using cinnamoyl-2-oxazolidinone as the receptor.
12
Schreiner PR.
Wittkopp A.
Org. Lett.
2002,
4:
217
13
Kaik M.
Gawroñski J.
Tetrahedron: Asymmetry
2003,
14:
1559
14 HRMS data of new organocatalysts: 1a, 564.1770 (calcd 564.1782); 1b, 564.1781 (calcd 564.1782); 1f, 501.1853 (calcd 501.1861); 1g, 701.1728 (calcd 701.1734).
15
General Experimental Procedure for (
S
,
S
)-1d-Catalyzed Asymmetric Michael Addition. Phenylthiol (12 µL, 0.11 mmol) was added to the stirred solution of α,β-unsaturated imide 7a (25.1 mg, 0.1 mmol) and 1d (4.2 mg, 0.01 mmol) in 0.5 mL CH2Cl2 at -40 °C. The reaction was stirred for 72 h. Flash chromatography eluting with petroleum ether-EtOAc (10:1) gave the product as a white solid (35.3 mg, 98%). 1H NMR (400 MHz, CDCl3): δ = 9.47 (s, NH), 7.78-7.76 (m, 2 H), 7.62-7.59 (m, 1 H), 7.51-7.47 (m, 2 H), 7.36-7.32 (m, 4 H), 7.29-7.19 (m, 6 H), 4.85 (dd, J = 1.6, 8.4 Hz, 1 H), 3.77 (dd, J = 8.4, 15.6 Hz, 1 H), 3.62 (dd, J = 8.4, 15.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 173.3, 165.6, 140.8, 133.9, 133.3, 133.1, 132.4, 128.9, 128.8, 128.4, 127.8, 127.7, 127.6, 127.4, 48.2, 43.8. ESI-MS: m/z = 360.1 [M - H]-; ee was determined by HPLC on Daicel Chiralcel OD (20% 2-propanol in hexane, 0.5 mL/min, t
S = 10.8 min, t
R = 12.1 min, 75% ee).
16a
Okino T.
Hoashi Y.
Takemoto Y.
Tetrahedron Lett.
2003,
44:
2817
16b
Wittkopp A.
Shreiner PR.
Chem.-Eur. J.
2003,
9:
407
For catalytic asymmetric protonation in Michael additions of thiols, see:
17a
Pracejus VH.
Wilcke F.-W.
Hanemann K.
J. Prakt. Chem.
1977,
319:
219
17b
Kumar A.
Salunkhe RV.
Rane RA.
Dike SY.
J. Chem. Soc., Chem. Commun.
1991,
485 ; also see ref. 7c
17c For catalytic protonation of enolate, see: Ishihara K.
Nakashima D.
Hiraiwa Y.
Yamamoto H.
J. Am. Chem. Soc.
2003,
125:
24 ; and references therein
17d
Hamashima Y.
Somei H.
Shimura Y.
Tamura T.
Sodeoka M.
Org. Lett.
2004,
6:
1861
18 The absolute configuration was determined by the rotation after conversion to ethyl ester.8c