Subscribe to RSS
DOI: 10.1055/s-2005-863744
First Enantioselective Synthesis of (-)-(2S,6S)-(6-Ethyltetrahydropyran-
2-yl)formic Acid
Publication History
Publication Date:
09 March 2005 (online)
Abstract
We describe in this letter the first enantioselective synthesis of (-)-(2S,6S)-(6-ethyltetrahydropyran-2-yl)formic acid (2) in five steps (30% overall yield, 87% ee), from the commercial chiral template (R)-2,3-isopropylideneglyceraldehyde (4). The two stereogenic centers in 2 were controlled by diastereoselective Barbier allylation of 4 in aqueous media and an efficient Prins cyclization reaction between 5 with propanal.
Key words
enantioselective synthesis - antinociceptive activity - tetrahydropyran - Prins cyclization - Barbier reaction - (R)-2,3-O-isopropylideneglyceraldehyde
-
1a
Class YJ.DeShong P. Chem. Rev. 1995, 95: 1843 -
1b
Norcross RD.Paterson I. Chem. Rev. 1995, 95: 2041 -
1c
Marko IE.Bayston DJ. Synthesis 1996, 297 -
2a
Hanschke E. Chem. Ber. 1955, 88: 1053 -
2b
Stapp PR. J. Org. Chem. 1969, 34: 479 -
3a
Arundale E.Mikeska LA. Chem. Rev. 1952, 52: 505 -
3b
Adams DR.Bhatnagar SP. Synthesis 1977, 661 -
3c
Snider BB. In The Prins Reaction and Carbonyl Ene Reactions Vol. 2:Trost BM.Fleming I.Heathcock CH. Pergamon Press; New York: 1991. p.527-561 - For recent work on the Prins cyclization, see:
-
4a
Liu J.Hsung RP.Peters SD. Org. Lett. 2004, 6: 3989 -
4b
Overman LE.Velthuisen EJ. Org Lett. 2004, 6: 3853 -
4c
Hart DJ.Bennet CE. Org. Lett. 2003, 5: 1499 -
4d
Barry CSJ.Crosby SR.Harding JR.Hughes RA.King CD.Parker GD.Willis CL. Org. Lett. 2003, 5: 2429 -
4e
Miranda PO.Diaz DD.Padron JI.Bermejo J.Martin VS. Org. Lett. 2003, 5: 1979 -
4f
Lopez F.Castedo L.Mascarenas JL. J. Am. Chem. Soc. 2002, 124: 4218 -
4g
Crosby SR.Harding JR.King CD.Parker GD.Willis CL. Org. Lett. 2002, 4: 3407 -
4h
Crosby SR.Harding JR.King CD.Parker GD.Willis CL. Org. Lett. 2002, 4: 577 -
4i
Cho YS.Kim HY.Cha JH.Pae AN.Koh HY.Choi JH.Chang MH. Org. Lett. 2002, 4: 2025 -
4j
Yang XF.Mague JT.Li CJ. J. Org. Chem. 2001, 66: 739 - 5
Alder RW.Harvey JN.Oakley MT. J. Am. Chem. Soc. 2002, 124: 4960 - 6
Jasti R.Vitale J.Rychnovsky SD. J. Am. Chem. Soc. 2004, 126: 9904 -
7a
de Souza ROMA.Meireles BA.Sequeira LS.Vasconcellos MLAA. Synthesis 2004, 1595 -
7b
Miranda LSM.Vasconcellos MLAA. Synthesis 2004, 1767 - 8
Miranda LSM.Marinho BG.Leitão SG.Matheus EM.Fernandes PD.Vasconcellos MLAA. Bioorg. Med. Chem. Lett. 2004, 14: 1573 - 9
Dalcanalc E.Montanari FJ. J. Org. Chem. 1986, 51: 567 -
10a
Paquette LA.Mitzel TM. J. Am. Chem. Soc. 1996, 118: 1931 -
10b
Wang ZY.Pan CF.Zhang ZH.Sun GJ. Org. Lett. 2004, 6: 3059 -
11a
Jurckak J.Pikul S.Bauer T. Tetrahedron 1986, 42: 447 -
11b
For some recent examples see ref.10b
-
11c See also:
Wroblewski AE.Halajewska-Wosik A. Tetrahedron: Asymmetry 2004, 15: 2075 -
11d
Thijs L.Zwanenburg B. Tetrahedron 2004, 60: 5237 -
11e
Matsuya Y.Itoh T.Nemoto H. Eur. J. Org. Chem. 2003, 12: 2221 -
11f
Boyer SH.Ugarkar BG.Erion MD. Tetrahedron Lett. 2003, 44: 4109 -
12a The diastereoisomeric purity of 5 was determined through 13C NMR spectroscopy (ref.9), and its enantiomeric purity through comparison of its optical rotation with literature reference data: [α]D 15.0 (92% de and 87% ee). See:
Roush WH.Walts AE.Hoong LK. J. Am. Chem. Soc. 1985, 107: 8186 -
12b
Spectroscopical data of anti-5: 1H NMR (200 MHz, CDCl3): δ = 5.92-5.75 (m, 1 H), 5.20 (m, 1 H), 5.10 (m, 1 H), 4.05-3.87 (m, 3 H), 3.77 (dq, J = 8.8, 4.4 Hz, 1 H), 2.43-2.10 (m, 2 H), 2.00 (d, J = 3.4 Hz, 1 H), 1.43 (s, 3 H), 1.37 (s, 3 H). 13C NMR (50 MHz, CDCl3): δ = 133.8, 118.1, 108.9, 77.9, 70.2, 65.0, 37.4, 26.3, 25.0. MS (70 eV): m/z (%) = 59 (100), 73 (35), 101 (72), 114 (2.5), 131 (7), 157 (45). IR (KBr, neat): 3444, 3078, 2987, 2936, 2899, 1642, 1456, 1435, 1381, 1254, 1215, 1066, 917, 854 cm-1.
References
Experimental Procedure for Diastereoisomeric Enrichment of
anti
-5.
To a stirred solution of the diastereoisomeric mixture of 5 (3.0 g, 17.4 mmol) in 45 mL of dry acetone, under Ar atmosphere, is added in one portion 0.2 g of p-TSA (1.04 mmol). The reaction is left stirring at -15 °C for 48 h, then the solvent is evaporated under reduced pressure and the residue submitted to flash column chromatography yielding 1.6 g (71%) of diastereoisomeric enriched 5 (92% de).
To a stirred solution of 5 (0.5 g, 2.9 mmol) in dry CH2Cl2 (5 mL), under an Ar atmosphere, is added propanal (0.5 mL, 6 mmol). The reaction mixture is cooled in an ice bath and then a solution of SnBr4 (1.25 g in 3 mL of dry CH2Cl2) is slowly added. The reaction is monitored through TLC and then quenched with 4 mL of a sat. solution of NaHCO3 followed by 5 mL of EtOAc. The mixture is left stirring for more 40 min. The aqueous phase is then extracted with EtOAc (3 × 5 mL). The combined organic phases are dried with anhyd NaSO4 and then concentrated. The crude product is filtered through silica (eluted with 20% EtOAc-hexanes) furnishing 0.55 g of 8 as a mixture of four diastereomers.
15Spectroscopical data of 9: [α]D -5.5 (c 2.9, CHCl3). 1H NMR (200 MHz, CDCl3): δ = 3.8 (m, 2 H), 3.6 (m, 1 H), 3.4 (dq, 1 H, J = 11.09, 5.12, 1.83 Hz), 3.20 (m, 2 H), 2.40 (br s, 1 H), 1.90 (m, 1 H), 1.20-1.70 (m, 7 H), 0.90 (t, 3 H, J = 7.33 Hz). 13C NMR (50 MHz, CDCl3): δ = 79.9, 79.5, 73.5, 63.7, 30.9, 29.1, 27.2, 23.0, 9.7. MS (70 eV): m/z (%) = 143 (9), 131 (4), 113 (57), 95 (98), 69 (61), 55 (100). IR (KBr, neat): 3390, 2934, 2856, 1460, 1441, 1085, 1045 cm-1.
16Spectroscopical data of 2 [α]D -45.2 (c 0.53, CHCl3, 87% ee). 1H NMR (200 MHz, CDCl3): δ = 4.0 (dd, 1 H, J = 9.1, 2.7 Hz), 3.4 (m, 1 H), 2.40 (m, 1 H), 2.00 (m, 2 H), 1.00-1.80 (m, 6 H), 0.99 (t, 3 H, J = 7.2 Hz). 13C NMR (50 MHz, CDCl3): δ = 147.3, 79.5 75.8, 29.9, 28.7, 28.3, 23.0, 9.6. MS (70 eV): m/z (%) = 129 (10), 113 (77), 101 (33), 95 (100). IR (KBr, neat): 3412, 2961, 2938, 2877, 2861, 1732, 1651, 1441, 1383, 1203, 1105, 918 cm-1.