Planta Med 2005; 71(4): 287-294
DOI: 10.1055/s-2005-864092
Review
© Georg Thieme Verlag KG Stuttgart · New York

Dietary Phytoestrogens: Potential Selective Estrogen Enzyme Modulators?

Jean-Philippe Basly1 , Marie-Chantal Canivenc Lavier2
  • 1Faculté de Pharmacie, Université de Limoges, Limoges, France.
  • 2UMR 1234, Toxicologie Alimentaire, INRA, Dijon, France
Further Information

Publication History

Received: July 14, 2004

Accepted: January 7, 2005

Publication Date:
27 April 2005 (online)

Abstract

Between one-third to one-half of all breast cancers are steroid sensitive. Steroid-pathway enzymes (sulfatase, 17β-hydroxysteroid dehydrogenases, aromatase and sulfotransferases) are thus prime candidates for therapeutic approaches based on the control of intacrine activity. Some phytoestrogens, ubiquitous in our diet, are inhibitors of these enzymes. Such a therapeutic potential has stimulated research and progress has been achieved during the last years. Complementary to previous reviews on phytoestrogens, this contribution covers the estrogen pathway inhibition effects of these compounds and special attention will be given to isoflavonoids, flavonoids and lignans. Furthermore, the research on structurally-related compounds as therapeutic agents will be discussed briefly.

References

  • 1 Brzezinski A, Debi A. Phytoestrogens: the ”natural” selective estrogen receptor modulators?.  Eur J Obstet Gynecol Reprod Biol. 1999;  85 47-51
  • 2 Thijssen J HH. Local biosynthesis and metabolism of estrogens in the human breast.  Maturitas. 2004;  49 25-33
  • 3 Chetrite G S, Pasqualini J R. The selective estrogen enzyme modulator (SEEM) in breast cancer.  J Steroid Biochem Molec Biol. 2001;  76 95-104
  • 4 Pasqualini J R. The selective estrogen enzyme modulators in breast cancer: a review.  Biochim Biophys Acta. 2004;  1654 123-43
  • 5 Diel P, Smolnikar K, Michna H. In vitro systems for the evaluation of the estrogenic activity of natural products.  Planta Medica. 1999;  65 197-203
  • 6 Ososki A L, Kenelly E J. Phytoestrogens: a review of the present state of research.  Phytother Res. 2003;  17 845-69
  • 7 Cos P, De Bruyne T, Apers S, Vanden Bergue D, Pieters L, Vlietinck A J. Phytoestrogens: Recent developments.  Planta Medica. 2003;  69 589-99
  • 8 Miksicek R J. Estrogenic flavonoids: structural requirements for biological activity.  Proc Soc Exp Biol Med. 1995;  208 44-50
  • 9 Kuiper G GJM, Lemmen J G, Carlsson B, Corton J C, Safe S H, Van der Saag P T, Van der Burg B, Gustafsson J A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.  Endocrinology. 1998;  10 4252-63
  • 10 Rosenberg-Zand R J, Jenkins D JA, Diamandis E P. Steroid hormone activity of flavonoids and related compounds.  Breast Cancer Res Treat. 2000;  62 35-49
  • 11 Branham W S, Dial S L, Moland R G, Hass B S, Blair R M, Fang H, Shi L, Tong W, Perkins R G, Sheenan D M. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J.  Nutr. 2002;  132 658-64
  • 12 Zierau O, Gester S, Schwab P, Metz P, Kolba S, Wulf M, Vollmer G. Estrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin.  Planta Medica. 2002;  68 449-51
  • 13 Diel P, Thomae R B, Caldarelli A, Zierau O, Kolba S, Schmidt S, Schwab P, Metz P, Vollmer G. Regulation of gene expression by 8-prenylnaringenin in uterus and liver of Wistar rats.  Planta Medica. 2004;  70 39-44
  • 14 Gehm B D, McAndrews J M, Chien P Y, Jameson J L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor.  Proc Natl Acad Sci USA. 1997;  94 14 138-43
  • 15 Dixon R A. Phytoestrogens.  Annu Rev Plant Biol. 2004;  55 225-61
  • 16 Wang L Q. Mammalian phytoestrogens: enterodiol and enterolactone.  J Chromatogr B. 2002;  777 289-309
  • 17 Poirier D, Ciobanu L C, Maltais R. Steroid Sulfatase inhibitors.  Exp Opinion Ther Patents. 1999;  9 1083-99
  • 18 Harris R M, Wood D M, Bottomley L, Blagg S, Owen K, Hughes K, Waring R H, Kirk C J. Phytoestrogens are potent inhibitors of estrogen sulfation: implications for breast cancer risk and treatment.  J Clin Endocrinol Metab. 2004;  89 1779-87
  • 19 Wong C K, Keung W M. Daidzein sulfoconjugates are potent inhibitors of sterol sulfatase (EC 3.1.6.2).  Biochem Biophys Res Commun. 1997;  233 579-83
  • 20 Clarke D B, Lloyd A S, Botting N P, Oldfield M F, Needs P W, Wiseman H. Measurement of intact sulfate and glucuronide phytoestrogen conjugates in human urine using isotope dilution liquid chromatography-tandem mass spectrometry with [13C3]isoflavone internal standards.  Anal Biochem. 2002;  309 58-72
  • 21 Huang Z, Fasco M J, Kaminsky L S. Inhibition of estrone sulfatase in human liver microsomes by quercetin and other flavonoids.  J Steroid Biochem Molec Biol. 1997;  63 9-15
  • 22 Mindich R, Möller G, Adamski J. The role of 17-beta-hydroxysteroid dehydrogenases.  Mol Cell Endocrinol. 2004;  218 7-20
  • 23 Sasano H, Suzuki T, Takeyama J, Utsunomiya H, Ito K, Ariga N, Moriya T. 17-beta-hydroxysteroid dehydrogenase in human breast and endometrial carcinoma. A new development in intracrinology.  Oncology. 2000;  59 5-12
  • 24 Oduwole O O, Li Y, Isomaa V V, Mäntyniemi A, Pulkka A E, Sioni Y, Vihko P T. 17ß-Hydroxysteroid dehydrogenase type 1 is an independent prognostic marker in breast cancer.  Cancer Res. 2004;  64 7604-9
  • 25 Mäkëlä S, Poutainen M, Kostian M L, Lehtimäki N, Strauss L, Santti R, Vihko R. Inhibition of 17β-hydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells.  Proc Soc Exp Biol Med. 1998;  217 310-6
  • 26 Le Bail J C, Laroche T, Marre-Fournier F, Habrioux G. Aromatase and 17β-hydroxysteroid dehydrogenase by flavonoids.  Cancer Lett. 1998;  133 101-5
  • 27 Le Bail J C, Champavier Y, Chulia A , Habrioux G. Effects of phytoestrogens on aromatase, 3β-hydroxysteroid dehydrogenase Δ5/Δ4 isomerase, 17β-hydroxysteroid dehydrogenase activities and human breast cancer cells.  Life Sci. 2000;  66 1281-91
  • 28 Le Bail J C, Pouget C, Fagnere C, Basly J P, Chulia A J, Habrioux G. Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities.  Life Sci. 2001;  68 751-61
  • 29 Vinh T K, Nicholls P J, Kirby A J, Simons C. Evaluation of 7-hydroxy-flavones as inhibitors of oestrone and oestradiol biosynthesis.  J Enz Inhib. 2001;  16 417-24
  • 30 Type 1 17β-HSD catalyses the conversion of androstenedione to testosterone but is mainly expressed in the testes and consequently is outside the scope of this review. 
  • 31 Krazeisen A, Breitling R, Möller G, Adamski J. Phytoestrogens inhibit human 17beta-hydroxysteroid dehydrogenase type 5.  Mol Cell Endocrinol. 2001;  171 151-62
  • 32 Krazeisen A, Breitling R, Möller G, Adamski J. Human 17beta-hydroxysteroid dehydrogenase type 5 is inhibited by dietary flavonoids.  Adv Exp Med Biol. 2002;  505 151-61
  • 33 Harada N. Aromatase and intracrinology of estrogen in hormone-dependent tumors.  Oncology. 1999;  57 7-16
  • 34 Chetrite G S, Corto-Prieto J, Philippe J C, Wright F. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues.  J Steroid Biochem Molec Biol. 2000;  72 23-7
  • 35 Akhtar M, Calder M R, Corina D L, Wright J N. Mechanistic studies on C-19 demethylation in oestrogen biosynthesis.  Biochem J. 1982;  201 569-80
  • 36 Kellis J T, Vickery L E. Inhibition of human estrogen synthetase (aromatase) by flavones.  Science. 1984;  225 1032-4
  • 37 Moochhala S M, Loke K H, Das N P. Spectral perturbation of human microsomal cytochrome P-450 by flavonoid binding.  Biochem J. 1988;  17 755-62
  • 38 Wang C, Mäkelä T, Hase T, Adlercreutz H, Kurzer M S. Lignans and flavonoids inhibit aromatase enzyme in human preadipocytes.  J Steroid Biochem Molec Biol. 1994;  50 205-12
  • 39 Jeong H J, Shin Y G, Kim I H, Pezzuto J M. Inhibition of aromatase activity by flavonoids.  Arch Pharm Res. 1999;  22 309-12
  • 40 Stresser D M, Turner S D, McNamara J, Stocker P, Miller V P, Crespi C L, Patten C J. A high-throughput screen to identify inhibitors of aromatase (CYP19).  Anal Biochem. 2000;  284 427-30
  • 41 Sanderson J T, Hordijk J, Denison M S, Springsteel M F, Nantz M H, van den Berg M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells.  Toxicol Sci. 2004;  82 70-9
  • 42 Kao Y C, Zhou C B, Sherman M, Laughton C A, Chen S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study.  Environ Health Persp. 1998;  106 85-92
  • 43 Almstrup K, Fernandez M F, Petersen J H, Olea N, Skakkeboæk N E, Leffers H. Dual effects of phytoestrogens result in U-shaped dose-response curves.  Environ Health Persp. 2002;  110 743-8
  • 44 Campbell D R, Kurzer M S. Flavonoid inhibition of aromatase enzyme activity in human preadipocytes.  J Steroid Biochem Molec Biol. 1993;  46 381-88
  • 45 Satoh K, Sakamoto Y, Ogata A, Nagai F, Mikuriya H, Numazawa M, Yamada K, Aoki N. Inhibition of aromatase activity by green tea extract catechins and their endocrinological effects of oral administration in rats.  Food Chem Toxicol. 2002;  40 925-33
  • 46 White E L, Ross L J, Steele V E, Kelloff G J, Hill D L. Screening of potential cancer preventing chemicals as aromatase inhibitors in an in vitro assay.  Anticancer Res. 1999;  19 1017-20
  • 47 Adlercreutz H, Bannwart C, Wähälä K, Mäkelä T, Brunow G, Hase T, Arosema P J, Kellis J T, Vickery L E. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens.  J Steroid Biochem Molec Biol. 1993;  44 147-53
  • 48 Ibrahim A R, Abul-Hajj Y J. Aromatase inhibition by flavonoids.  J Steroid Biochem Molec Biol. 1990;  34 257-60
  • 49 Saarinen N, Joshi S C, Ahotupa M, Li X, Ammälä J, Mäkelä S, Santti R. No evidence for the in vivo activity of aromatase-inhibiting flavonoids.  J Steroid Biochem Molecul Biol. 2001;  78 231-9
  • 50 Kester M H, Bulduk S, Tibboel D, Meinl W, Glatt H, Falany C N, Coughtrie M W, Bergman A, Safe S H, Kuiper G GJM, Schuur A G, Brouwer A, Visser T J. Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs.  Endocrinology. 2000;  141 1897-900
  • 51 Strott C A. Sulfonation and molecular action.  Endocrin Rev. 2002;  23 703-732
  • 52 Otake Y, Nolan A L, Walle K, Walle T. Quercetin and resveratrol potently reduce estrogen sulfotransferase activity in normal human mammary epithelial cells.  J Steroid Biochem Molec Biol. 2000;  73 265-70
  • 53 Falany J L, Falany C N. Expression of cytosolic sulfotransferases in normal mammary epithelial cells and breast cancer cell lines.  Cancer Res. 1996;  56 1551-5
  • 54 Glatt H, Boeing H, Engelke C EH, Ma L, Kuhlow A, Pabel U, Pomplun D, Teubner W, Meinl W. Human cytosolic sulphotransferases: genetics, characteristics, toxicological aspects.  Mutation Res. 2001;  482 27-40
  • 55 Eaton E A, Walle U K, Lewis A J, Hudson T, Wilson A A, Walle T. Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase. Potential role in drug metabolism and chemoprevention.  Drug Metab Dispos. 1996;  24 232-7
  • 56 Ghazali R A, Waring R H. The effects of flavonoids on human phenolsulphotransferases: potential in drug metabolism and chemoprevention.  Life Sci. 1999;  65 1625-32
  • 57 Kirk C J, Harris R M, Wood D M, Waring R H, Hughes P J. Do dietary phytoestrogens influence susceptibility to hormone-dependent cancer by disrupting the metabolism of endogenous oestrogens?.  Biochem Soc Trans. 2001;  29 209-16
  • 58 Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Popyphenols: food sources and bioavailability.  Am J Clin Nutr. 2004;  79 727-47
  • 59 Zhu M, Chen Y, Li R C. Oral absorption and bioavailability of tea catechins.  Planta Medica. 2000;  66 444-7
  • 60 Rowlands I, Faughnan M, Hoey L, Wähälä K, Williamson G, Cassidy A. Bioavailability of phytoestrogens.  Brit J Nutr. 2003;  89 S45-S58
  • 61 Spencer J PE, Abd El Mohsen M, Rice-Evans C. Cellular uptake and metabolism of flavonoids and their metabolites: implication for their bioavailability.  Arch Biochem Biophys. 2004;  423 148-61
  • 62 Zeligs M A, Jacobs I C. Compositions and methods of adjusting steroid hormone metabolism through facilitated absorption of hydrophobic dietary compounds. US Patent 6,086,915, 2000
  • 63 Setchell K D, Zimmer-Nechemias L, Cai J, Heubi J E. Exposure of infants to phyto-oestrogens from soy-based infant formula.  Lancet. 1997;  350 23-7
  • 64 Bhat K PL, Pezzuto J M. Natural modulators of estrogen biosynthesis and function as chemopreventive agents.  Arch Pharm Res. 2001;  24 73-84
  • 65 Kinghorn A D, Su B N, Jang D S, Chang L C, Lee D, Gu J Q, Carcache-Blanco E J, Pawlus A D, Lee S K, Park E J, Cuendet M, Gills J J, Bhat K, Park H S, Mata-Greenwood E, Song L L, Jang M, Pezzuto J M. Natural inhibitors of carcinogenesis.  Planta Medica. 2004;  70 691-705
  • 66 Nicolaou K C, Pfefferkorn J A, Roecker A J, Cao G Q, Barluenga S, Mitchell H J. Natural products-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans.  J Am Chem Soc. 2000;  122 9939-53
  • 67 Reed J M, Potter B VL. Compounds with a sulfamate group. WO 9 732 872 1997
  • 68 Reed J M, Potter B VL. Preparation of flavone, isoflavone and flavanone sulfamates as estrone sulfatase and/or aromatase inhibitors for treatment of breast and endometrial cancers. US Patent 6,187,766 2003
  • 69 Yoshihama M, Nakakoshi M, Nakamura J, Nakayama S. Preparation of novel benzofuranone derivatives as remedies for hormone-dependent diseases. WO 9 830 556 1998
  • 70 Hoffren A M, Murray C M, Hoffmann R D. Structure-based focusing using pharmacophores derived from the active site of 17β-hydroxysteroid dehydrogenase.  Curr Pharm Des. 2001;  7 547-66
  • 71 Gobec S, Sova M, Kristan K, Rizner T L. Cinnamic acid esters as potent inhibitors of fungal 17β-hydroxysteroid dehydrogenase - a model enzyme of the short-chain dehydrogenase/reductase superfamily.  Bioorg Med Chem Lett. 2004;  14 3933-6
  • 72 Yoshihama M, Nakakoshi M, Nakamura J, Nakayama S. Preparation of novel tetralone and benzopyranone derivatives as 17β-HSD inhibitors. WO 9 832 724 1998
  • 73 Saarinen N M, Warri A, Makela S I, Eckerman C, Reunanen M, Ahotupa M, Salmi S M, Franke A A, Kangas L, Santti R. Hydroxymatairesinol, a novel enterolactone precursor with antitumor properties from a coniferous tree (Picea abies).  Nutr Cancer. 2000;  36 207-14
  • 74 Pouget C, Fagnere C, Basly J P, Habrioux G, Chulia A J. Design, synthesis and evaluation of 4-imidazolylflavans as new leads for aromatase inhibition.  Bioorg Med Chem Lett.. 2002;  12 2859-61
  • 75 Pouget C, Fagnere C, Basly J P, Habrioux G, Chulia A J. New aromatase inhibitors. Synthesis and inhibitory activity of pyridinyl-substituted flavanone derivatives.  Bioorg Med Chem Lett. 2002;  12 1059-61
  • 76 Kim Y W, Hackett J C, Brueggemeier R W. Synthesis and aromatase inhibitory activity of novel pyridine-containing isoflavones.  J Med Chem. 2004;  47 4032-40
  • 77 Kitaoka M, Kadokawa H, Sugano M, Ichikawa K, Taki M, Takaishi S, Iijima Y, Tsutsumi S, Boriboon M, Akiyama T. Prenylflavonoids: a new class of non-steroidal phytoestrogen (Part 1). Isolation of 8-isopentenylnaringenin and an initial study on its structure-activity relationship.  Planta Medica. 1998;  64 511-5
  • 78 Miyamoto M, Matsushita Y, Kiyokawa A, Fukuda C, Iijima Y, Sugano M, Akiyama T. Prenylflavonoids: a new class of non-steroidal phytoestrogen (Part 2). Estrogenic effects of 8-isopentenylnaringenin on bone metabolism.  Planta Medica. 1998;  64 516-9
  • 79 Jarry H, Harnischfeger G, Duker E. The endocrine effects of constituents of Cimicifuga racemosa. 2. In vitro binding of constituents to estrogen receptors.  Planta Medica. 1985;  51 316-9
  • 80 He K, Zheng B, Kim C H, Rogers L, Zheng Q. Direct analysis and identification of triterpene glycosides by LC/MS in black cohosh, Cimicifuga racemosa, and in several commercially available black cohosh products.  Planta Medica. 2000;  66 635-40
  • 81 Takino Y, Koshioka M, Shiokawa M, Ishii Y, Maruyama S, Higashino M, Hayashi T. Quantitative determination of glycyrrhizic acid in liquorice roots and extracts by TLC-densitometry.  Planta Medica. 1979;  36 74-8
  • 82 Liu J, Burdette J E, Xu H, Gu C, van Breemen R B, Bhat K P, Booth N, Constantinou A I, Pezzuto J M, Fong H H, Farnsworth N R, Bolton J L. Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms.  J Agric Food Chem. 2001;  49 2472-9
  • 83 Hu K, Yao X. Protodioscin (NSC-698 796): its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screen panel.  Planta Medica. 2002;  68 297-301
  • 84 Lu G H, Chan K, Chan C L, Leung K, Jiang Z H, Zhao Z Z. Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography-mass spectrometry.  J Chromatogr A. 2004;  1046 101-7
  • 85 Makela S, Poutanen M, Lehtimaeki J, Kostian M L, Santti R, Vihko R. Estrogen-specific 17 beta-hydroxysteroid oxidoreductase type 1 (E.C. 1.1.1.62) as a possible target for the action of phytoestrogens.  Proc Soc Exp Biol Med. 1995;  208 51-9
  • 86 Coldham N G, Sauer M J. Identification, quantitation and biological activity of phytoestrogens in a dietary supplement for breast enhancement.  Food Chem Toxicol. 2001;  39 1211-24
  • 87 Josephs R A, Guinn J S, Jennifer S, Harper M L, Askari F. Liquorice consumption and salivary testosterone concentrations.  Lancet. 2001;  358 1613-4
  • 88 Armanini D, Bonanni G, Mattarello M J, Fiore C, Sartorato P, Palermo M. Licorice consumption and serum testosterone in healthy man.  Exp Clin Endocrinol Diabetes. 2003;  111 341-3
  • 89 Anderson M L. Inhibiting aromatase with specific dietary supplements. US Patent 2 004 156 926 2004

Dr. Jean-Philippe Basly

Faculté de Pharmacie

Université de Limoges

2 rue du docteur Marcland

87025 Limoges

France

Phone: +33-555-43-58-98

Fax: +33-555-43-58-98

Email: basly@pharma.unilim.fr

    >