Synlett 2005(5): 0801-0804  
DOI: 10.1055/s-2005-864792
LETTER
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthetic Route to Ravidosamine Derivatives

Day-Shin Hsu, Takashi Matsumoto, Keisuke Suzuki*
Department of Chemistry, Tokyo Institute of Technology and SORST-JST Agency, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551, Japan
Fax: +81(3)57342788; e-Mail: ksuzuki@chem.titech.ac.jp;
Further Information

Publication History

Received 17 December 2004
Publication Date:
09 March 2005 (online)

Abstracts

Concise synthesis of ravidosamine, the amino sugar constituent of ravidomycin and other antibiotics, has been achieved. The key steps include (1) regioselective reduction of benzylidene acetal with DIBAL, and (2) stereoselective reduction of oxime to the corresponding amine by using samarium diiodide in the ­presence of methanol.

    References

  • 1a Nicolaou KC. Mitchell HJ. Angew. Chem. Int. Ed.  2001,  40:  1576 
  • 1b Nicolaou KC. Boddy CNC. Bräse S. Winssinger N. Angew. Chem. Int. Ed.  1999,  38:  2096 
  • 1c Weymouth-Wilson AC. Nat. Prod. Rep.  1997,  14:  99 
  • 2 Hauser FM. Ellenberger SR. Chem. Rev.  1986,  86:  35 
  • 3 Findlay JA. Liu J.-S. Radics L. Rakhit S. Can. J. Chem.  1981,  59:  3018 
  • 4 Futagami S. Ohashi Y. Imura K. Hosoya T. Ohmori K. Matsumoto T. Suzuki K. Tetrahedron Lett.  2000,  41:  1063 
  • 5 Ben A. Yamauchi T. Matsumoto T. Suzuki K. Synlett  2004,  225 
  • 6 Arai M. Tomoda H. Matsumoto M. Takahashi Y. Woodruff BH. Ishiguro N. Kobayashi S. Omura S. J. Antibiot.  2001,  54:  554 
  • 7a Itoh T. Kinoshita M. Aoki S. Kobayashi M. J. Nat. Prod.  2003,  66:  1373 
  • 7b

    The absolute stereostructure of the sugar portion of komodoquinone A has not been established.

  • 8 Binkley RW. Goewey GS. Johnston JC. J. Org. Chem.  1984,  49:  992 
  • 9 Lindhorst TK. Thiem J. Liebigs Ann. Chem.  1990,  1237 
  • 10 Guo and coworkers studied exactly the same system, noting qualitatively the difference in the reactivities of 8 and 9 for DIBAL reduction and also suggested the solution by employing BF3·OEt2. Unfortunately, the exact conclusion could not be drawn from their data, because they used the α/β-anomeric mixture of methyl glycoside. See: Guo Z.-W. Deng S.-T. Hui Y.-Z. J. Carbohydr. Chem.   1996.  15:  p.965 
  • 11 Bundle DR. Josephson S. Can. J. Chem.  1978,  56:  2686 
  • 12 Gauthier DR. Szumigala RH. Armstrong JD. Volante RP. Tetrahedron Lett.  2001,  42:  7011 
  • 14 Frigerio M. Santagostino M. Tetrahedron Lett.  1994,  35:  8019 
  • 15 Brünker H.-G. Adam W. J. Am. Chem. Soc.  1995,  117:  3976 
  • 16 Yamaura M. Noguchi M. Umemura K. Yoshimura J. Kidorui  1993,  22:  54 
  • 17 Molander GA. Org. React.  1994,  46:  211 
  • 19 Alper PB. Hung S.-C. Wong C.-H. Tetrahedron Lett.  1996,  37:  6029 
13

To a stirred solution of 9 (356 mg, 1 mmol) in CH2Cl2 (5 mL) at 0 °C was added BF3·OEt2 (0.25 mL, 2 mmol). After stirring for 5 min, the reaction was quenched with sat. aq NaHCO3 solution. The mixture was extracted with CH2Cl2, and the combined organic extracts were washed with brine, dried over Na2SO4, filtered, and concentrated. The 1H NMR indicated that the ratio of 8 and 9 was about 2:1.

18

Compound 18: 1H NMR (400 MHz, CDCl3): δ = 7.40-7.26 (m, 10 H), 4.86 (d, J = 11.2 Hz, 1 H), 4.78 (d, J = 3.7 Hz, 1 H), 4.64-4.56 (m, 3 H), 4.07 (dd, J = 3.7, 11.2 Hz, 1 H), 3.85 (br q, J = 6.6 Hz, 1 H), 3.62 (br d, J = 2.9 Hz, 1 H), 3.33 (s, 3 H), 3.00 (dd, J = 2.9, 11.2 Hz, 1 H), 2.59 (s, 6 H), 1.13 (d, J = 6.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 138.2 (C), 138.1 (C), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.5 (CH), 127.4 (CH), 97.2 (CH), 82.9 (CH), 75.2 (CH2), 75.1 (CH), 71.1 (CH2), 66.8 (CH), 61.4 (CH), 54.9 (CH3), 43.5 (CH3), 16.3 (CH3). IR (neat): 3030, 2931, 2895, 1454, 1099, 1053, 733, 696 cm-1.