Subscribe to RSS
DOI: 10.1055/s-2005-864804
Preparation of the Three C1-C7, C8-C15, and C16-N22 Fragments of the Hsp90 Inhibitor Herbimycin A
Publication History
Publication Date:
23 March 2005 (online)
Abstract
The construction of the three C16-N22 2, C1-C7 6 (as 23) and C8-C15 5 (as 32) segments of the Hsp90 inhibitor herbimycin A (1) is reported. 1-Iodo-3-nitro-2,5-diphenol compound 2 was obtained in 55% yield for 3 steps from the commercially available diiodo derivative 7. Reaction between 1,1-dibromo-alkene 22 and vinyltin 17a using Pd(PPh3)4 or Pd(CH3CN)2Cl2/CuI/diisopropylethylamine, in toluene or DMF at 85 °C, led to enyne 23 in 63% yield (19% overall yield from isopropylidene glyceraldehyde). The synthesis of the C8-C15 sub-unit 32 was performed in 3.4% overall yield for 13 steps, from the commercially available ester 24, with a Hoppe crotylation as a key step.
Key words
herbimycin A - synthesis - Stille - enyne - 1,1-dibromo-1-alkene - Sharpless oxidation - Hoppe aldehyde allylation
-
1a
Zhang H.Burrows F. J. Mol. Med. 2004, 82: 488 -
1b
Wegele H.Müller L.Buchner J. Rev. Physiol. Biochem. Pharmacol. 2004, 151: 1 -
1c
Jones DT.Addison E.North JM.Lowdell MW.Hoffbrand AV.Mehta AB.Ganeshaguru K.Folarin NI.Wickremasinghe RG. Blood 2004, 103: 1855 -
1d
Bagatell R.Whitesell L. Mol. Cancer Ther. 2004, 3: 1021 -
1e
Bedin M.Gaben A.-M.Saucier C.Mester J. Int. J. Cancer 2004, 109: 643 -
2a
Omura S.Iwai Y.Takahashi Y.Sadakane A.Nakagawa A.Oiwa H.Hasegawa Y.Ikai T. J. Antibiotics 1979, 32: 255 -
2b
Omura S.Nakagawa A.Sadakane N. Tetrahedron Lett. 1979, 4323 -
2c
Furusaki A.Matsumoto T.Nakagawa A.Omura S. J. Antibiotics 1980, 33: 781 -
2d
Iwai Y.Nakagawa A.Sadakane N.Omura S.Oiwa H.Matsumoto S.Takahashi M.Ikai T.Ochiai Y. J. Antibiotics 1980, 33: 1114 -
2e
Shibata K.Satsumabayashi S.Nakagawa A.Omura S. J. Antibiotics 1986, 39: 1630 -
3a
Nakata M.Osumi T.Ueno A.Kimura T.Tamai T.Tatsuta K. Bull. Chem. Soc. Jpn. 1992, 65: 2974 -
3b
Nakata M.Osumi T.Ueno A.Kimura T.Tamai T.Tatsuta K. Tetrahedron Lett. 1991, 32: 6015 -
3c
Carter KD.Panek JS. Org. Lett. 2004, 6: 55 -
3d Synthesis of advanced fragments:
Eshelman JE.Epps JL.Kallmerten J. Tetrahedron Lett. 1993, 34: 749 -
3e
Martin SF.Dodge JA.Burgess LE.Limberakis C.Hartmann M. Tetrahedron 1996, 52: 3229 -
3f
Martin SF.Limberakis C.Burgess LE.Hartmann M. Tetrahedron 1996, 52: 3229 - 5
Jackson DY. Synth. Commun. 1988, 18: 337 - 6
Corey E.-J.Fuchs PL. Tetrahedron Lett. 1972, 36: 3769 -
7a
Jiang B.Ma P. Synth. Commun. 1995, 25: 3641 -
7b
Jackson DY. Synth. Commun. 1988, 18: 337 - 8
Uenishi J.-i.Kawahama R.Shiga Y.Yonemitsu O.Tsuji J. Tetrahedron Lett. 1996, 37: 6759 - 9
The Stille Reaction
Farina V.Krishnamurthy V.Scott WJ. John Wiley and Sons, Inc.; New York: 1998. - 10
Baker R.Castro JL. J. Chem. Soc., Perkin Trans. 1 1990, 47 -
11a
Booker-Milburn KI.Heffernan GD.Parsons PJ. J. Chem. Soc., Chem. Commun. 1992, 350 -
11b
Barbero A.Cuadrado P.Fleming I.Gonzalez AM.Pulido FJ. J. Chem. Soc., Chem. Commun. 1992, 351 - 13
Shen W.Wang L. J. Org. Chem. 1999, 64: 8873 -
16a
Hoppe D. Angew. Chem., Int. Ed. Engl. 1984, 23: 932 -
16b
Hoppe D.Zschage O. Angew. Chem., Int. Ed. Engl. 1989, 28: 69 -
16c
Zschage O.Hoppe D. Tetrahedron 1992, 48: 5657 -
16d
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 -
17a
Katsuki T.Sharpless KB. Tetrahedron Lett. 1979, 20: 4733 -
17b
Sharpless KB.Verhoeven TR. Aldrichimica Acta 1979, 12: 63 -
17c
Katsuki T.Sharpless KB. J. Am. Chem. Soc. 1980, 102: 5974 -
18a
Hansen RM. Chem. Rev. 1991, 91: 437 -
18b
Dai L.Lou B.Zhang Y.Guo G. Tetrahedron Lett. 1986, 4343 -
18c
Sharpless BM.Caron M. J. Org. Chem. 1985, 50: 1557
References
Compound 2: 1H NMR (270 MHz, CDCl3): δ = 7.60 (d, J = 2.5 Hz, 1 H), 7.50 (d, J = 2.5 Hz, 1 H), 3.85 (s, 3 H, CH3, OMe), 3.60 (s, 3 H, CH3, OMe). MS (GC, EI): m/z = 309 [M+].
12Compound 19: 1H NMR (270 MHz, CDCl3): δ = 5.54 (wide s, 1 H), 4.82 (dd, J = 6.4, 6.2 Hz, 1 H), 4.11 (dd, J = 7.8, 6.2 Hz, 1 H), 4.04 (s, 2 H), 3.86 (dd, J = 7.8, 6.4 Hz, 1 H), 1.81 (s, 3 H, CH3), 1.57 (s, 1 H, OH), 1.43 (s, 3 H, CH3), 1.33 (s, 3 H, CH3).
14Compound 22: 1H NMR (270 MHz, CDCl3): δ = 6.29 (d, J = 8.0 Hz, 1 H), 3.93 (m, 1 H), 3.63 (m, 2 H), 3.29 (s, 3 H, CH3, OCH3), 0.82 [s, 9 H, 3 CH3, SiC(CH3)3], 0.01 [s, 6 H, 2 CH3, Si(CH3)2]. 13C NMR (67.8 MHz, CDCl3): δ = 137.2 (CH), 92.4 (C), 82.2 (CH), 64.4 (CH2), 57.2 (CH3, OCH3), 25.8 [3 CH3, SiC(CH3)3], 18.3 [C, SiC(CH3)3], -4.0, -4.5 [2 CH3, Si(CH3)2]. MS (CI, NH3): m/z = 392 [MH+ + NH3], 375 [MH+].
15Compound 23: 1H NMR (400 MHz, CDCl3): δ = 5.61 (br s, 1 H), 4.61 (t, J = 3.3 Hz, 1 H), 4.19 (d, J = 14.4 Hz, 1 H), 4.17 (m, 1 H), 3.94 (d, J = 14.4 Hz, 1 H), 3.84 (m, 1 H), 3.79 (dd, J = 10.5, 6.5 Hz, 1 H), 3.77 (dd, J = 10.5, 5.5 Hz, 1 H), 3.51 (m, 1 H), 3.45 (s, 3 H, CH3, OCH3), 1.89 (s, 3 H, CH3), 1.73-1.58 (m, 6 H, 3 CH2), 0.82 [s, 9 H, 3 CH3, SiC(CH3)3], 0.01 [s, 6 H, 2 CH3, Si(CH3)2]. 13C NMR (67.8 MHz, CDCl3): δ = 148.5 (C), 105.5 (CH), 98.1 (CH), 90.0 (C), 84.2 (C), 73.9 (CH), 70.6 (CH2), 66.7 (CH2), 62.5 (CH2), 57.3 (CH3, OCH3), 30.9 (CH2), 26.4 [3 CH3, SiC(CH3)3], 25.8 (CH2), 19.7 (CH2), 18.9 [C, SiC(CH3)3], -4.8, -4.7 [2 CH3, Si(CH3)2]. MS (CI, NH3): m/z = 386 [MH+ + NH3], 369 [MH+]. IR (CCl4) 2929, 2856, 2360, 2341, 1578, 1463, 1129, 869 cm-1. Anal. Calcd (%) for C20H36O4Si (368.58): C, 65.17; H, 9.84. Found: C, 65.35; H, 9.97.
19Compound 32: 1H NMR (270 MHz, CDCl3): δ (two diastereomers) = 4.55 (m, 1 H), 3.87 (m, 1 H), 3.60 (m, 1 H), 3.50 (m, 1 H), 3.39, 3.37 (2 s, 3 H, CH3, CH3O), 3.28, 3.26 (2 s, 3 H, CH3, CH3O), 3.25 (m, 1 H), 3.20 (m, 1 H), 3.03 (m, 1 H), 2.52 (m, 1 H), 2.03 (m, 1 H), 1.81 (s, 3 H, CH3), 1.73-1.58 (m, 6 H, 3 CH2), 1.68 (m, 1 H), 1.32, (m, 1 H), 1.10 (d, J = 7.0 Hz, 3 H, CH3), 0.94 (d, J = 6.9 Hz, 3 H, CH3). 13C NMR (67.5 MHz, CDCl3): δ (two diastereomers) = 98.7, 98.5 (CH), 83.4 (CH), 80.5 (CH), 79.6 (C), 78.5 (C), 72.4, 72.3 (CH2), 62.4 (CH2), 61.5, 61.2 (CH3, CH3O), 57.9, 57.8 (CH3, CH3O), 35.1-34.8 (CH2), 30.6 (CH2), 30.4, 30.2 (CH), 29.8 (CH), 25.4, 25.3 (CH2), 19.3, 19.2 (CH2), 18.3 (CH3), 17.8 (CH3), 3.5 (CH3). Anal. Calcd for C18H32O4 (312.44): C, 69.19; H, 10.32. Found: C, 69.03; H, 10.56.
20Compound 33: 1H NMR (270 MHz, CDCl3): δ = 5.29 (d, J = 5.0 Hz, 1 H), 4.89 (td, J = 9.8, 4.3 Hz, 1 H), 3.42 (dd, J = 9.8, 2.9 Hz, 1 H), 2.61-2.59 (m, 1 H), 2.34-2.31 (m, 1 H), 2.14-2.04 (m, 9 H, 2 CH3CO + 2 H), 1.23 (d, J = 7.0 Hz, 3 H, CH3), 0.92 (d, J = 6.9 Hz, 3 H, CH3).
21Compound 34: 1H NMR (270 MHz, CDCl3): δ = 7.61-7.58 (m, 4 H, arom.), 7.36-7.31 (m, 6 H, arom.), 3.54 (m, 1 H), 3.42 (m, 1 H), 3.35 (s, 3 H), 3.25 (s, 3 H), 3.15 (m, 1 H), 3.05 (dd, J = 7.0, 3.6 Hz, 1 H), 2.55 (m, 1 H), 1.86 (m, 1 H), 1.82 (s, 3 H), 1.64 (m, 1 H), 1.22 (m, 1 H), 1.11 (d, J = 7.0 Hz, 3 H), 0.98 [s, 9 H, SiC(CH3)3], 0.93 (d, J = 6.9 Hz, 3 H). 13C NMR (67.5 MHz, CDCl3): δ = 135.6 (4 CH, arom.), 133.9 (2 C, arom.), 129.4 (2 CH, arom.), 127.5 (4 CH, arom.), 84.0 (CH), 80.2 (CH), 79.8 (C), 78.6 (C), 69.5 (CH2), 61.2, 57.0 (2 CH3, 2 CH3O), 33.2 (CH2), 30.1 (CH), 28.9 (CH), 26.9 [3 CH3, SiC(CH3)3], 19.3 [C, SiC(CH3)3], 18.5 (CH3), 16.8 (CH3), 4.0 (CH3). Anal. Calcd for C29H42O3Si (466.73): C, 74.63; H, 9.07. Found: C, 74.86; H, 9.18.
22This route used more conventional transformations to reach the desired fragment in a 6% overall yield for 18 steps (Scheme [10] ). Centonze-Audureau, S.; Porée, F-H.; Betzer, J. F.; Brion, J.-D.; Pancrazi, A.; Ardisson, J. unpublished results.