References
1 Part 56 in the series, ‘Studies on Novel Synthetic Methodologies’. IICT Communication No. 050216
2a Baylis AB, and Hillman MED. inventors; German Patent 2155113.
; Chem. Abstr. 1972, 77, 34174q
2b
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811 ; and references cited therein
3a
Hoffmann HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1985,
24:
94
3b
Buchholz R.
Hoffmann HMR.
Helv. Chim. Acta
1991,
74:
1213
4a
Das B.
Banerjee J.
Ravindranath N.
Venkataiah B.
Tetrahedron Lett.
2004,
45:
2425
4b
Das B.
Banerjee J.
Ravindranath N.
Tetrahedron
2004,
60:
8357
4c
Das B.
Banerjee J.
Mahender G.
Majhi A.
Org. Lett.
2004,
6:
3349
4d
Das B.
Banerjee J.
Majhi A.
Mahender G.
Tetrahedron Lett.
2004,
45:
9225
5a
Ma J.
Angew. Chem. Int. Ed.
2003,
42:
4290
5b
Chowdari NS.
Suri JT.
Barbas CF.
Org. Lett.
2004,
6:
2507
6
Ramesh C.
Mahender G.
Ravindranath N.
Das B.
Tetrahedron
2003,
59:
1049
7
Tanemura K.
Suzuki T.
Nishida Y.
Satsumabayashi K.
Horaguchi T.
Chem. Commun.
2004,
470
8
General Procedure for the Preparation of Allylamines.
To a solution of 1 or 2 (1 mmol) in anhyd MeOH (10 mL), NH4OAc (8 equiv) was added in one portion under a nitrogen atmosphere. The mixture was stirred at r.t. and monitored by TLC. After completion, the solution was concentrated and dissolved in CH2Cl2 (10 mL). The solution was washed with brine (3 × 10 mL) followed by H2O (3 × 10 mL) and the combined aqueous washings extracted with CH2Cl2 (3 × 10 mL). The total CH2Cl2 portion was concentrated and subjected to column chromatography over silica gel using EtOAc-hexane (1:4) as eluent to afford pure allylamine (3 or 4). The spectroscopic and analytical data of some representative allylamines (major product) are given below.
Compound 3b: IR (KBr): νmax = 3452, 1722, 1526, 1482 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.92 (1 H, s), 7.46 (1 H, dd, J = 8.0, 2.0 Hz), 7.34 (1 H, dd, J = 8.0, 2.0 Hz), 7.22 (1 H, td, J = 8.0, 2.0 Hz), 7.12 (1 H, td, J = 8.0, 2.0 Hz), 3.74 (3 H, s), 3.10 (2 H, s). 13C NMR (50 MHz, CDCl3): δ = 168.4, 139.7, 134.0, 133.5, 131.6, 131.2, 129.8, 129.4, 126.6, 52.0, 49.6. EIMS: m/z = 225, 227 [M+]. Anal. Calcd for C11H12ClNO2 (%): C, 58.54; H, 5.32; N, 6.21. Found: C, 58.62; H, 5.29; N, 6.28.
Compound 3d: IR (KBr): νmax = 3462, 1723, 1585, 1505 cm-1. 1H NMR (200 MHz, CDCl3): δ = 8.40 (1 H, t, J = 2.0 Hz), 8.18 (1 H, dt, J = 8.0, 2.0 Hz), 7.82 (1 H, dt, J = 8.0, 2.0 Hz), 7.80 (1 H, s), 7.54 (1 H, t, J = 8.0 Hz), 3.83 (3 H, s), 3.54 (2 H, s). 13C NMR (50 MHz, CDCl3): δ = 167.8, 148.3, 140.0, 136.4, 135.6, 129.6, 135.3, 124.3, 123.4, 52.2, 50.1. MS (EI): m/z = 236 [M+]. Anal. Calcd for C11H12N2O4 (%): C, 55.93; H, 5.08; N, 11.86. Found: C, 55.88; H, 5.01; N, 11.84.
Compound 3e: IR (KBr): νmax = 3440, 1732, 1560, 1522 cm-1. 1H NMR (200 MHz, CDCl3): δ = 6.89 (1 H, t, J = 7.0 Hz), 3.64 (3 H, s), 3.08 (2 H, s), 2.09 (2 H, t, J = 7.0 Hz), 1.72 (1 H, m), 0.92 (6 H, d, J = 7.0 Hz). MS (EI): m/z = 171 [M+]. Anal. Calcd for C9H17NO2 (%): C, 63.17; H, 15.74; N, 12.96. Found: C, 63.24; H, 15.81; N, 12.85.
Compound 4a: IR (KBr): νmax = 3453, 2354, 1620, 1532 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.72-7.67 (2 H, m), 7.40-7.28 (3 H, m), 7.07 (1 H, s), 3.56 (2 H, s). 13C NMR (50 MHz, CDCl3): δ = 137.2, 130.5, 129.9, 129.4, 128.6, 128.3, 126.2, 118.8, 116.5, 52.0. MS (EI): m/z = 158 [M+]. Anal. Calcd for C10H10N (%): C, 83.33; H, 6.94; N, 19.44. Found: C, 83.41; H, 6.88; N, 19.40.
Compound 4c: IR (KBr): νmax = 3442, 2352, 1522, 1485 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.72 (2 H, d, J = 8.0 Hz), 7.43 (2 H, d, J = 8.0 Hz), 7.10 (1 H, s), 3.62 (2 H, s). MS (EI): m/z = 192, 194 [M+]. Anal. Calcd for C10H9ClN2 (%): C, 62.34; H, 4.68; N, 14.55. Found: C, 62.41; H, 4.71; N, 14.51.
9a
Larson GL.
de Kaifer CF.
Seda R.
Torres LE.
Ramirez JR.
J. Org. Chem.
1984,
49:
3385
9b
Basavaiah D.
Sarma PKS.
Bhavani AKD.
J. Chem. Soc., Chem. Commun.
1994,
1091
9c
Baraldi PG.
Guarneri M.
Pollini GP.
Simoni D.
Barco A.
Benetti S.
J. Chem. Soc., Perkin Trans. 1
1984,
2501
9d
Tanaka K.
Yamagishi N.
Tanikaga R.
Kaji A.
Bull. Chem. Soc. Jpn.
1979,
52:
3619
9e
Minami I.
Yahara M.
Shimizu I.
Tsuji J.
J. Chem. Soc., Chem. Commun.
1986,
118
9f
Oda M.
Yamamura A.
Watabe T.
Chem. Lett.
1979,
8:
1427
9g
Matsuda I.
Okada H.
Izumi Y.
Bull. Chem. Soc. Jpn.
1983,
56:
528
9h
Boche G.
Buckl K.
Martens D.
Schneider DR.
Tetrahedron Lett.
1979,
19:
4967
10a
Foucaud A.
El Guemmout F.
Bull. Chim. Soc. Fr.
1989,
403
10b
Patra A.
Roy AK.
Batra S.
Bhaduri AP.
Synlett
2002,
1819