Abstract
In this Account our recent results in relation to the catalytic and stereoselective Friedel-Crafts (FC) alkylation of indoles are described. Over the last decade, remarkable efforts have been devoted towards the replacement of the primal approaches with new more efficient, reliable, and environmentally benign strategies for the functionalization of indoles. Moreover, the emerging area of catalytic asymmetric FC processes is addressed and some examples of enantioselective alkylations of indoles via 1,4-addition to α,β-unsaturated systems and asymmetric ring-opening reaction of aromatic epoxides are described.
1 Introduction
2 Catalytic Regioselective Alkylation of Indoles
2.1 Michael Addition of Indoles to Enones Catalyzed by InBr3
2.2 Synthesis of 1,3-Bisindolyl Ketones through 1,4-Conjugate Addition of Indoles to Indolyl Enones
2.3 Synthesis of 1,2,3,4-Tetrahydro-β-carbolines and Pyranyl Analogues via Intramolecular Indole Alkylation
2.4 InBr3 -Catalyzed Michael Addition of Indoles to Nitroalkenes in Aqueous Media
2.5 Environmentally Benign Continuous and Semi-continuous Solid-Acid-Catalyzed Alkylation of Indoles
2.6 Regio- and Stereoselective Catalyzed Ring Opening of Enantiomerically Pure Aromatic Epoxides
2.7 Pd-Catalyzed Allylic Alkylation of Indoles
3 Catalytic and Enantioselective Alkylation of Indoles: Introduction.
3.1 BINAP-Pd(II) as a Chiral Lewis Acid for the Michael Addition of Indoles to α,β-Unsaturated Thioesters
3.2 [SalenAlCl] as the Catalyst for the Enantioselective Addition of Indoles to Enones
3.3 Asymmetric Kinetic Resolution of Racemic Internal Aromatic Epoxides Promoted by [SalenCrX]
4 Outlook
Key words
alkylations - asymmetric catalysis - electrophilic aromatic substitutions - indoles - Lewis acids
References
1a
Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
Tetrahedron Lett.
2001,
42:
3041
1b
Bandini M.
Cozzi PG.
Garelli A.
Melchiorre P.
Umani-Ronchi A.
Eur. J. Org. Chem.
2002,
3243
2a
Ranu BC.
Eur. J. Org. Chem.
2000,
2347
2b
Chauhan KK.
Frost CG.
J. Chem. Soc., Perkin Trans. 1
2000,
3015
2c
Babu G.
Perumal PT.
Aldrichimica Acta
2000,
33:
16
3a
Olah GA. In Friedel-Crafts and Related Reactions
Wiley-Interscience;
New York:
1963.
3b
Olah GA. In Friedel-Crafts Chemistry
Wiley-Interscience;
New York:
1973.
3c
Roberts RM.
Khalaf AA. In Friedel-Crafts Alkylation Chemistry. A Century of Discovery
Marcel Dekker;
New York:
1984.
4a
Sundberg RJ. In
The Chemistry of Indoles
Academic Press;
New York:
1970.
4b
Sundberg RJ. In Indoles
Academic Press;
San Diego:
1996.
5
Lo KK.-W.
Tsang KH.-K.
Hui W.-K.
Zhu N.
Chem. Commun.
2003,
2704
6
Plimmer JR.
Gammon DW.
Ragsdale NN.
Encyclopedia of Agrochemicals
Vol. 3:
John Wiley & Sons;
New York:
2003.
7
Ramirez A.
Garcia-Rubio S.
Curr. Med. Chem.
2003,
10:
1891
8
Yamamoto H. In Lewis Acids in Organic Synthesis
Wiley-VCH;
Weinheim:
2000.
9
Jacobsen EN.
Pfaltz A.
Yamamoto H. In Comprehensive Asymmetric Catalysis
Springer-Verlag;
Berlin:
1999.
10
Trost BM.
Crawley ML.
Chem. Rev.
2003,
103:
2921
11a
Harrington PE.
Kerr MA.
Synlett
1996,
1047
11b
Manabe K.
Aoyama N.
Kobayashi S.
Adv. Synth. Catal.
2001,
343:
174
12a
Moore RE.
Cheuk C.
Patterson GML.
J. Am. Chem. Soc.
1984,
106:
6456
12b
Muratake H.
Natsume M.
Tetrahedron
1990,
46:
6331
12c
Muratake H.
Kumagami H.
Natsume M.
Tetrahedron
1990,
46:
6351
12d
Vaillancourt V.
Albizati KF.
J. Am. Chem. Soc.
1993,
115:
3499
12e
Fukuyama T.
Chen X.
J. Am. Chem. Soc.
1994,
116:
3125
12f
Kinsman AC.
Kerr MA.
J. Am. Chem. Soc.
2003,
125:
14120
13
Bandini M.
Cozzi PG.
Giacomini M.
Melchiorre P.
Selva S.
Umani-Ronchi A.
J. Org. Chem.
2002,
67:
3700
For some representative examples of indium(III)-salts-catalyzed organic transformations in water see:
14a
Ceschi MA.
de Araujo Felix L.
Peppe C.
Tetrahedron Lett.
2000,
41:
9695
14b
Loh T.-P.
Liung SBKW.
Tan K.-L.
Wei LL.
Tetrahedron
2000,
56:
3227
14c
Li Z.
Zhang J.
Li C.-J.
Tetrahedron Lett.
2003,
44:
153
14d
Jang T.-S.
Keum G.
Kang SB.
Chung BY.
Kim Y.
Synlett
2003,
775
14e
Juan S.
Hua Z.-H.
Qi S.
Ji S.-J.
Loh T.-P.
Synlett
2004,
829
15
Tietze LF.
Chem. Rev.
1996,
96:
115
16a
Yadav JS.
Abraham S.
Reddy BVS.
Sabitha G.
Synthesis
2001,
2165
16b
Ji S.-J.
Synlett
2003,
2074
16c
Wang S.-Y.
Ji S.-J.
Loh T.-P.
Synlett
2003,
2377
16d
Srivastava N.
Banik BK.
J. Org. Chem.
2003,
68:
2109
16e
Alam MM.
Varala R.
Adapa SR.
Tetrahedron Lett.
2003,
44:
5115
16f
Reddy AV.
Ravinder K.
Goud TV.
Krishnaiah P.
Raju TV.
Venkateswarlu Y.
Tetrahedron Lett.
2003,
44:
6257
16g
Yadav JS.
Reddy BVS.
Swamy T.
Tetrahedron Lett.
2003,
44:
9121
16h
Arcadi A.
Bianchi G.
Chiarini M.
D’Anniballe G.
Marinelli F.
Synlett
2004,
944
For some representative examples of 1,2-addition of indoles to carbonyls for the synthesis of di- and triindolylalkanes see:
17a
Yadav JS.
Subba Reddy BV.
Murthy CVSR.
Mahesh Kumar G.
Madan C.
Synthesis
2001,
783
17b
Chakrabarty M.
Ghosh N.
Basak R.
Harigaya Y.
Tetrahedron Lett.
2002,
43:
4075
17c
Chakrabarty M.
Sarkar S.
Tetrahedron Lett.
2002,
43:
1351
17d
Ramesh C.
Banerjee J.
Pal R.
Das B.
Adv. Synth. Catal.
2003,
345:
557
17e
Penieres-Carrillo G.
García-Estrada JG.
Gutíerrez-Ramirez JL.
Alvarez-Toledano C.
Green Chem.
2003,
5:
337
17f
Reddy AV.
Ravinder K.
Reddy VLN.
Goud TV.
Ravikanth V.
Venkateswarlu Y.
Synth. Commun.
2003,
33:
3687
17g
Li J.
Li B.
Zhang G.
Synth. Commun.
2004,
34:
275
17h
Giannini G.
Marzi M.
Moretti GP.
Penco S.
Tinti MO.
Pesci S.
Lazzaro F.
De Angelis F.
Eur. J. Org. Chem.
2004,
2411
17i
Ji S.-J.
Zhou M.-F.
Gu D.-G.
Jiang Z.-Q.
Loh T.-P.
Eur. J. Org. Chem.
2004,
1584
18
Nenaidenko VG.
Baraznenok IL.
Balenkova FS.
Russ. J. Org. Chem.
1998,
34:
1019
19
Okuachi Y.
Itonaga M.
Minami T.
Owa T.
Kitoh K.
Yoshino H.
Org. Lett.
2000,
2:
1485
20
Onishi Y.
Iko T.
Yasuda M.
Baba M.
Tetrahedron
2002,
58:
8227
21
Bandini M.
Fagioli M.
Melloni A.
Umani-Ronchi A.
Synthesis
2003,
397
22 Agnusdei, M.; Bandini, M.; Melloni, A.; Umani-Ronchi, A. unpublished results.
23
Austin JF.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
1172
24
Cox ED.
Cook JM.
Chem. Rev.
1995,
95:
1797
25a
Guardox P.
Balon M.
Carmona C.
Muñoz MA.
Domene C.
J. Pharm. Science
1997,
86:
106
25b
Mobilia D.
Humber LG.
Katz AH.
Demerson CA.
Hughes P.
Brigance R.
Conway K.
Shah U.
Williams G.
Labbadia F.
De Lange B.
Asselin A.
Schmid J.
Newburger J.
Jensen NP.
Weichman BM.
Chau T.
Neuman G.
Wood DD.
Van Engen D.
Taylor N.
J. Med. Chem.
1988,
31:
2211
26
Heaney H.
The Intramolecular Aromatic Friedel-Crafts Reaction, In Comprehensive Organic Synthesis
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
27a
Humber LG.
Med. Res. Rev.
1987,
7:
1
27b
Mobilio D.
Humber LG.
Katz AH.
Demerson CA.
Hughes P.
Brigance R.
Conway K.
Shah U.
Williams G.
Labbadia F.
De Lange B.
Asselin A.
Schmid J.
Neburger J.
Jensen NP.
Weichman BM.
Chau T.
Neuman G.
Wood DD.
Van Engen D.
Taylor N.
J. Med. Chem.
1988,
31:
2211
28
Agnusdei M.
Bandini M.
Melloni A.
Umani-Ronchi A.
J. Org. Chem.
2003,
68:
7126
29
Breslow R.
Water as a Solvent for Chemical Reactions, In Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes
Anastas P.
Williamson TC.
Pergamon;
Oxford:
1998.
30a
Noland WE.
Hartman PJ.
J. Chem. Soc.
1954,
76:
3227
30b
Noland WE.
Christensen GM.
Sauer GL.
Dutton GGS.
J. Chem. Soc.
1955,
77:
456
31a
Lloyd DH.
Nichols DE.
J. Org. Chem.
1986,
51:
4294
31b
Komoto I.
Kobayashi S.
Org. Lett.
2002,
4:
1115
32
Bandini M.
Melchiorre P.
Melloni A.
Umani-Ronchi A.
Synthesis
2002,
1110
33a
Fringuelli F.
Pizzo F.
Vaccaro L.
J. Org. Chem.
2001,
66:
3554
33b
Amantini D.
Fringuelli F.
Pizzo F.
Vaccaro L.
J. Org. Chem.
2001,
66:
4463
33c
Kobayashi L.
Chem. Lett.
1991,
2187
33d
Kobayashi S.
Manabe K.
Acc. Chem. Res.
2002,
35:
209
34
Dessole G.
Herrera RP.
Ricci A.
Synlett
2004,
2374
35a
Chakrabarty M.
Basak R.
Ghosh N.
Tetrahedron Lett.
2001,
41:
3913
35b
Chakrabarty M.
Basak R.
Ghosh N.
Harigaya Y.
Tetrahedron
2004,
60:
1941
36
Bandini M.
Fagioli M.
Umani-Ronchi A.
Adv. Synth. Catal.
2004,
346:
545
37a
Cainelli G.
Contento M.
Maniscalchi F.
Regnoli R.
J. Chem. Soc., Perkin Trans. 1
1980,
2516
37b
Tanabe K.
Holderich WF.
Appl. Catal., A
1999,
181:
399
37c
Sheldon RA.
van Bekkum H. In Fine Chemicals through Heterogeneous Catalysis
Wiley-VCH;
Weinheim:
2001.
38a
Wilson K.
Clark JH.
Acc. Chem. Res.
2000,
72:
1313
38b
Corma A.
Garcia H.
Chem. Rev.
2002,
102:
3837
38c
Okuhara T.
Chem. Rev.
2002,
102:
3641
38d
Clark JH.
Acc. Chem. Res.
2002,
35:
791
38e
Corma A.
Garcia H.
Chem. Rev.
2003,
103:
4307
39a
Tundo P. In Continuous Flow Methods in Organic Synthesis
Prentice Hall PTR;
Upper Side River New York:
1992.
39b
Anderson NG.
Org. Process Res. Dev.
2001,
5:
613
40 Mass flow rate of reactant for mass of catalyst utilized in the reactor.
For representative examples of indole alkylation through ring opening of epoxides mediated by a stoichiometric amount of LA see:
41a
Kato K.
Ono M.
Akita H.
Tetrahedron
2001,
57:
10055
41b
Brown MJ.
Carter PS.
Fenwick AE.
Fosberry AP.
Hamprecht DW.
Hibbs MJ.
Jarvest RL.
Mensah L.
Milner PH.
O’Hanlon PJ.
Pope AJ.
Richardson CM.
West A.
Witty DR.
Bioorg. Med. Chem. Lett.
2002,
12:
3171
41c
Reddy R.
Jaquith JB.
Neelagiri VR.
Saleh-Hanna S.
Durst T.
Org. Lett.
2002,
4:
695
42a
Yadav JS.
Reddy BVS.
Abraham S.
Sabitha G.
Synlett
2002,
1550
42b LiClO4 : Yadav JS.
Reddy BVS.
. J. Chem. Res., Synop.
2003,
781
43a
Kotsuki H.
Nishiuchi M.
Kobayashi S.
Nishizawa H.
J. Org. Chem.
1990,
55:
2969
43b
Kotsuki H.
Hayashida K.
Shimanouchi T.
Nishizawa H.
J. Org. Chem.
1996,
61:
984
44 In fact, electronic properties of aromatic epoxides are known to drive the ring-opening with indoles at the benzylic position.
45
Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
J. Org. Chem.
2002,
67:
5386
46 The optically active (ee = 83%) 1c was prepared using asymmetric Jacobsen epoxidation: Bellucci MC.
Bergamini A.
Cozzi PG.
Papa A.
Tagliavini E.
Umani-Ronchi A.
Tetrahedron: Asymmetry
1997,
8:
859
47 Aliphatic epoxides were not found suitable candidates for the present catalytic indole alkylation giving the β-indolyl alcohols in poor yield as well as regioselectivity.
48
Itsuno S. In Lewis Acids in Organic Synthesis
Vol. 2:
Yamamoto H.
Wiley-VCH;
Weinheim:
2000.
Chap. 21.
p.945 ; and references cited therein
49a
Krzywicki A.
Marczewski M.
J. Chem. Soc., Faraday Trans. 1
1980,
76:
1311
49b
Drago RS.
Getty EE.
J. Am. Chem. Soc.
1988,
110:
3311
50 By an analogous synthetic procedure polymer-supported lanthanide(III) catalysts were also prepared see: Yu L.
Chen D.
Li J.
Wang PG.
J. Org. Chem.
1997,
62:
3575
51
Bandini M.
Fagioli M.
Melloni A.
Umani-Ronchi A.
Adv. Synth. Catal.
2004,
346:
573
52
Bandini M.
Melloni A.
Umani-Ronchi A.
Org. Lett.
2004,
6:
3199
53
Trost BM.
Van Vraken DL.
Chem. Rev.
1996,
96:
395
54a
Billups WE.
Erkes RS.
Reed LE.
Synth. Commun.
1980,
10:
147
54b
Trost BM.
Molander GA.
J. Am. Chem. Soc.
1981,
103:
5969
54c
Bourak M.
Gallo R.
Heterocycles
1990,
31:
447
54d
Zhu X.
Ganesan A.
J. Org. Chem.
2002,
67:
2705
54e
Yadav JS.
Reddy BVS.
Muralikrishna Reddy P.
Srinivas C.
Tetrahedron Lett.
2002,
43:
5185
54f
Trost BM.
Krische MJ.
Berl V.
Grenzer EM.
Org. Lett.
2002,
4:
2005
54g
Moreno-Mañas M.
Pleixats R.
Adv. Heterocycl. Chem.
1996,
66:
73 ; and references cited therein
55
Malkov AV.
Davis SL.
Baxendale I.
Mitchell WL.
Kočovsk P.
J. Org. Chem.
1999,
64:
2751
56a
Liu C.
Han X.
Wang X.
Widenhoefer RA.
J. Am. Chem. Soc.
2004,
126:
3700
56b
Liu C.
Widenhoefer RA.
J. Am. Chem. Soc.
2004,
126:
10250
57
Ferreira EM.
Stoltz BM.
J. Am. Chem. Soc.
2003,
125:
9578
For recent comprehensive reviews focused on this field see:
58a
Bolm C.
Hildebrand JP.
Muniz K.
Hermanns N.
Angew. Chem. Int. Ed.
2001,
40:
3284
58b
Wang Y.
Ding K.
Dai L.
Chemtracts: Org. Chem.
2001,
14:
610
58c
Jørgensen KA.
Synthesis
2003,
1117
58d
Bandini M.
Melloni A.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
2004,
43:
550
59
Bigi F.
Casiraghi C.
Casnati G.
Sartori G.
J. Org. Chem.
1985,
50:
5018
60a
Johannsen M.
Chem. Commun.
1999,
2233
60b
Zhuang W.
Gathergood N.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2001,
66:
1009
61
Shinohara T.
Suzuki K.
Tetrahedron Lett.
2002,
43:
6937 ; and references cited therein
62
Zhuang W.
Hansen T.
Jørgensen KA.
Chem. Commun.
1999,
347
63
Zhou J.
Tang Y.
J. Am. Chem. Soc.
2002,
124:
9030
64
Zhou J.
Tang Y.
Chem. Commun.
2004,
432
65
Jensen KB.
Thorhauge J.
Hazell RG.
Jørgensen KA.
Angew. Chem. Int. Ed.
2001,
40:
160
66
Bandini M.
Melloni A.
Tommasi S.
Umani-Ronchi A.
Helv. Chim. Acta
2003,
86:
3753
67 Among all the Lewis acids tested, only BINAM-Sc(OTF)3 , BINOL/AlEt2 Cl, BOX-Zn(OTf)2 , and Tol-BINAP-CuOTf led to the formation of 50 in significant yields. However the enantioselectivity recorded was poor with ee ranging from 0-36%.
68
Evans DA.
Scheidt KA.
Fandrick KR.
Lam HW.
Wu J.
J. Am. Chem. Soc.
2003,
123:
10780
Pybox-Sc(III) complexes were already employed as chiral Lewis acids in numerous asymmetric transformation: see
69a
Evans DA.
Masse CE.
Wu J.
Org. Lett.
2002,
4:
3375
69b
Evans DA.
Wu J.
Masse CE.
MacMillan DWC.
Org. Lett.
2002,
4:
3379
69c
Evans DA.
Johnson JS.
Olhava EJ.
J. Am. Chem. Soc.
2000,
122:
1635
70
Paloma C.
Oiarbide M.
Kardak BG.
Garcia JM.
Linden A.
J. Am. Chem. Soc.
2005,
127:
4154
For related asymmetric organo-catalyzed FC alkylation of aromatic compounds see:
71a
Paras NA.
MacMillan DWC.
J. Am. Chem. Soc.
2001,
123:
4370
71b
Paras NA.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
7894
72 Theoretical exploration of the stereoselective organo-catalyzed FC alkylation of indoles was recently performed: Gordillo R.
Carter J.
Houk KN.
Adv. Synth. Catal.
2004,
346:
1175
73
Austin JF.
Kim S.-G.
Sinz CJ.
Xiao W.-J.
MacMillan DWC.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5482
74
Taylor MS.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
10558
Selected examples of [SalenAlCl]-catalyzed asymmetric organic transformations:
75a
Myers JK.
Jacobsen EN.
J. Am. Chem. Soc.
1999,
121:
8959
75b
Evans DA.
Janey JM.
Magomedov N.
Tedrow JS.
Angew. Chem. Int. Ed.
2001,
40:
1884
75c
Jha SC.
Joshi NN.
Tetrahedron: Asymmetry
2001,
12:
2463
75d
Sammins GM.
Jacobsen EN.
J. Am. Chem. Soc.
2003,
125:
4442
75e
Taylor MS.
Jacobsen EN.
J. Am. Chem. Soc.
2003,
125:
11204
75f
Sammis GM.
Danjo H.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
9928
75g
Vanderwal CD.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
126:
14724
75h Chiral aluminum-Schiff base complexes have been fully spectroscopically as well as crystallograpically characterized: Atwood DA.
Harvey MJ.
Chem. Rev.
2001,
101:
37 ; and references cited therein
76a
Bandini M.
Fagioli M.
Melchiorre P.
Melloni A.
Umani-Ronchi A.
Tetrahedron Lett.
2003,
44:
5843
76b
Bandini M.
Fagioli M.
Garavelli M.
Melloni A.
Trigari V.
Umani-Ronchi A.
J. Org. Chem.
2004,
69:
7511
77
Miller JA.
Jin W.
Nguyen ST.
Angew. Chem. Int. Ed.
2002,
41:
2953
78
Cozzi PG.
Chem. Soc. Rev.
2004,
33:
410
For recent representative examples of computational investigations of metallo-salen complex geometries and their effects on enantioselective transformations see:
79a
Cavallo L.
Jacobsen H.
Angew. Chem. Int. Ed.
2000,
39:
589
79b
El-Bahraoui J.
Wiest O.
Feichtinger D.
Plattner DA.
Angew. Chem. Int. Ed.
2001,
40:
2073
79c
Jacobsen H.
Cavallo L.
Chem.-Eur. J.
2001,
7:
800
80
Keith JM.
Larrow JF.
Jacobsen EN.
Adv. Synth. Catal.
2001,
343:
5
81a
Nielsen LPC.
Stevenson CP.
Blackmond DG.
Jacobsen EN.
J. Am. Chem. Soc.
2004,
124:
1360 ; and references cited therein
81b
Jacobsen EN.
Acc. Chem. Res
2000,
33:
421
81c
Bartoli G.
Bosco M.
Carlone A.
Locatelli M.
Massaccesi M.
Melchiorre P.
Sambri L.
Org. Lett.
2004,
6:
2173
81d
Bartoli G.
Bosco M.
Carlone A.
Locatelli M.
Melchiorre P.
Sambri L.
Org. Lett.
2004,
6:
3973
81e
Ready JM.
Jacobsen EN.
J. Am. Chem. Soc.
1999,
121:
6086
82a
Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
1999,
38:
3357
82b
Bandini M.
Cozzi PG.
Melchiorre P.
Morganti S.
Umani-Ronchi A.
Org. Lett.
2001,
3:
1153
83
Bandini M.
Cozzi PG.
Melchiorre P.
Umani-Ronchi A.
Angew. Chem. Int. Ed.
2004,
43:
84
TMSN3 :
84a
Yamashita H.
Bull. Chem. Soc. Jpn.
1988,
61:
1213
84b See also: Nugent WA.
J. Am. Chem. Soc.
1992,
114:
2768
84c See also: Martinez LE.
Leighton JL.
Carsten DH.
Jacobsen EN.
J. Am. Chem. Soc.
1995,
117:
5897
12-Halohydrins:
85a
Denmark SE.
Barsanti PA.
Wong KT.
Stavenger RA.
J. Org. Chem.
1998,
63:
2428
85b
Nugent WA.
J. Am. Chem. Soc.
1998,
120:
7139
85c
Tao B.
Lo MMC.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
353
85d
Nakajima M.
Saito M.
Uemura M.
Hashimoto S.
Tetrahedron Lett.
2002,
43:
8827
TMSCN:
86a
Cole MB.
Shimizu KD.
Krueger CA.
Harrity JPA.
Snapper ML.
Hoveyda AH.
Angew. Chem., Int. Ed. Engl.
1996,
35:
1668
86b
Shimizu K.
Cole BM.
Krueger CA.
Kuntz KW.
Snapper ML.
Hoveyda AH.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1703
86c
Schaus SE.
Jacobsen EN.
Org. Lett.
2000,
2:
1001
ROH:
87a
Jacobsen EN.
Kakiuchi F.
Konsler RG.
Larrow JF.
Tokunaga M.
Tetrahedron Lett.
1997,
38:
773
87b
Matsunaga S.
Das J.
Roels J.
Vogl EM.
Yamamoto N.
Iida T.
Yamaguchi K.
Shibasaki M.
J. Am. Chem. Soc.
2000,
122:
2252
RSH:
88a
Iida T.
Yamamoto T.
Sasai H.
Shibasaki M.
J. Am. Chem. Soc.
1997,
119:
4783
88b
Wu MH.
Jacobsen EN.
J. Org. Chem.
1998,
63:
5252
88c
Wu J.
Hou X.-L.
Dai L.-X.
Xia L.-J.
Tang M.-H.
Tetrahedron: Asymmetry
1998,
9:
3431
89 RNH2 : Shneider C.
Sreekanth AR.
Mai E.
Angew. Chem. Int. Ed.
2004,
43:
5691
ZnR2 :
90a
Baldassi F.
Crotti P.
Macchia F.
Pineschi M.
Arnold A.
Feringa BL.
Tetrahedron Lett.
1998,
39:
7795
90b
Bertozzi F.
Crotti P.
Macchia F.
Pineschi M.
Arnold A.
Feringa BL.
Org. Lett.
2000,
2:
933
90c
Lautens M.
Renaud J.-L.
Hiebert S.
J. Am. Chem. Soc.
2000,
122:
1804
91 RB(OH)2 : Lautens M.
Dockendorff C.
Fagnou K.
Malicki A.
Org. Lett.
2002,
4:
1311