References
1a Tubulin polymerisation inhibitors, see: Mu F.
Lee DJ.
Pryor DE.
Hamel E.
Cushman M.
J. Med. Chem.
2002,
45:
4774
1b Antibacterial: Heinisch L.
Wittmann S.
Stoiber T.
Berg A.
Ankel-Fuchs D.
Möllmann U.
J. Med. Chem.
2002,
45:
3032
1c Matrix metalloproteinase inhibitors: Chollet A.-M.
Le Diguarher T.
Kucharczyk N.
Loynel A.
Bertrand M.
Tucker G.
Guilbaud N.
Burbridge M.
Pastoureau P.
Fradin A.
Sabatini M.
Fauchère J.-L.
Casara P.
Bioorg. Med. Chem. Lett.
2002,
10:
531
1d Peptidoleukotriene antagonist: Brown FJ.
Bernstein PR.
Cronk LA.
Dosset DL.
Hebbel KC.
Maduskuie TP.
Shapiro HS.
Vacek EP.
Yee YK.
Willard AK.
Krell RD.
Snyder DW.
J. Med. Chem.
1989,
32:
807
1e Cestodicidal agents: Dubey SK.
Singh AK.
Singh H.
Sharma S.
Iyer RN.
Katiyar JC.
Goel P.
Sen AB.
J. Med. Chem.
1978,
21:
1178
2a
Larksarp C.
Alper H.
J. Org. Chem.
1999,
64:
9194
2b
Boontheung P.
Perlmutter P.
Tetrahedron Lett.
1998,
39:
2629
2c
Kamal A.
Rao AB.
Sattur PB.
Tetrahedron Lett.
1987,
28:
2425
2d
Kemp DS.
Duclos JM.
Bernstein Z.
Welch WM.
J. Org. Chem.
1971,
36:
157
2e
May EL.
J. Med. Chem.
1967,
10:
505
2f
Miyano M.
J. Am. Chem. Soc.
1965,
87:
3958
2g
Stenseth RE.
Baker JW.
Roman DP.
J. Med. Chem.
1963,
6:
212
3a
Barton DHR.
Liu W.
Chem. Commun.
1997,
571
3b
Pintye J.
Fülöp F.
Bernáth G.
Sohár P.
Monatsh. Chem.
1985,
116:
857
3c
Sainsbury M. In Comprehensive Heterocyclic Chemistry
Vol. 3:
Katritzky AR.
Rees CW.
Pergamon Press;
New York:
1984.
p.995-1038 ; and references contained therein.
4 For a demonstration of the synthetic potential of N-2-hydroxyethyl-1,3-oxazinane-2,4-diones see: Kamino T.
Murata Y.
Kawai N.
Hosokawa S.
Kobayashi S.
Tetrahedron Lett.
2001,
42:
5249
5 Ozaki S, and Koto K. inventors; Jpn. Tokkyo Koho, JP 19660502. For a patent on their usage as sedatives, hypnotics, anticonvulsants and depressants see:
; Chem. Abstr. 1969, 72, 43701
6 For a review on the use of oxazolidin-2-ones as chiral auxiliaries for asymmetric synthesis see: Ager DJ.
Prakash I.
Schaad DR.
Aldrichimica Acta
1997,
30:
3
7a
Evans DA.
Bartroli J.
Shih TL.
J. Am. Chem. Soc.
1981,
103:
2127
7b
Evans DA.
Nelson JV.
Taber T.
Top. Stereochem.
1982,
13:
1
7c
Davies SG.
Nicholson RL.
Smith AD.
Org. Biomol. Chem.
2004,
2:
3385
8a
Nerz-Stormes M.
Thornton ER.
J. Org. Chem.
1991,
56:
2489
8b
Evans DA.
Rieger DL.
Bilodeau MT.
Urpi F.
J. Am. Chem. Soc.
1991,
113:
1047
8c
Yan TH.
Tan CH.
Lee HC.
Lo HC.
Huang TY.
J. Am. Chem. Soc.
1993,
115:
2613
8d
Crimmins MT.
She J.
Synlett
2004,
1371
9
Kagoshima H.
Hashimoto Y.
Ogura D.
Saigo K.
J. Org. Chem.
1998,
63:
691
10
Walker MA.
Heathcock CH.
J. Org. Chem.
1991,
56:
5747
11
Gabriel T.
Wessjohann L.
Tetrahedron Lett.
1997,
38:
4387
12
Evans DA.
Tedrow JS.
Shaw JT.
Downey CW.
J. Am. Chem. Soc.
2002,
124:
392
For previous reports where these type of 1,3-oxazinane-2,4-diones were formed as unwanted products of other types of synthetic transformation see:
13a
Mickel SJ.
Sedelmeier GH.
Niederer D.
Schuerch F.
Koch G.
Kuesters E.
Daeffler R.
Osmani A.
Seeger-Weibel M.
Schmid E.
Hirni A.
Schaer K.
Gamboni R.
Bach A.
Chen S.
Chen W.
Geng P.
Jagoe CT.
Kinder FR.
Lee GT.
McKenna J.
Ramsey TM.
Repiè O.
Rogers L.
Shieh W.-C.
Wang R.-M.
Waykole L.
Org. Proc. Res. Dev.
2004,
8:
107
13b
Keck GE.
Lundquist GD.
J. Org. Chem.
1999,
64:
4482
13c
Narasaka K.
Yamamoto I.
Tetrahedron
1992,
48:
5743
14 For a report where reaction of the boron enolate of a related N-propionyl-1,3-oxazinan-2-one with benzaldehyde in the presence of excess Bu2BOTf resulted in a rearranged 1,3-oxazinane-2,4-dione product see: Abbas TR.
Cadogan JIG.
Doyle AA.
Gosney I.
Hodgson PKG.
Howells GE.
Hulme AN.
Parsons S.
Sadler IH.
Tetrahedron Lett.
1997,
38:
4917
15
Kende AS.
Kawamura K.
DeVita RJ.
J. Am. Chem. Soc.
1990,
112:
4070
16
Ito Y.
Terashima S.
Tetrahedron
1991,
47:
2821
17
Representative Synthetic Protocol for
syn
-Aldol Reactions.
A 0.5 M solution of 9-BBN·OTf in hexanes (1.2 equiv) was added to a stirred solution of N-acyloxazolidin-2-one (1 equiv) in CH2Cl2 at 0 °C and allowed to stir for 5 min. N,N-Diisopropylethylamine (1.4 equiv) was added, the reaction stirred for 25 min at 0 °C and cooled to -78 °C. An aldehyde (1.1 equiv) was then added, the reaction was stirred for 2 h and the reaction then allowed to warm to 0 °C for 30 min. Then, pH 7.0 phosphate buffer was added, followed by a 2:1 solution of MeOH-H2O2. The reaction was extracted with CH2Cl2 (3 ×) and the combined organic extracts washed with aq NaHCO3, brine, dried (MgSO4) and concentrated in vacuo to afford the appropriate syn-aldol which was then purified by chromatography.
18 These conditions have been employed previously for asymmetric syn-aldol reactions using imidazolidin-2-one derived glycine enolates, see: Caddick S.
Parr NJ.
Pritchard MC.
Tetrahedron Lett.
2000,
41:
5963
19 We have reported previously on a single example of this rearrangement see: Feuillet FJP.
Robinson DEJE.
Bull SD.
Chem. Commun.
2003,
2184
20
Representative Synthetic Protocol for Rearrangement Reaction.
A 1.0 M solution of Et2Zn in toluene (0.1 equiv) was added dropwise to a stirred solution of the syn-aldol (1 equiv) in CH2Cl2 at r.t. The reaction was stirred for 2 h. Then, sat. aq NH4Cl was added and the reaction extracted with CH2Cl2 (3 ×). The combined organic extracts were washed with brine, dried (MgSO4), and concentrated in vacuo to afford the desired syn-1,3-oxazinane-2,4-dione which was then purified by chromatography.
21 All new compounds were fully characterised. Selected data for new compounds:
syn
-6-Ethyl-3-(2-hydroxyethyl)-5-isopropyl-1,3-oxazinane-2,4-dione (10b): 1H NMR (300 MHz, CDCl3): δ = 0.97 [3 H, d, J = 7.0 Hz, CH(CH
3)2], 1.00 (3 H, t, J = 7.5 Hz, CH2CH
3), 1.02 [3 H, d, J = 7.0 Hz, CH(CH
3)2], 1.60 (1 H, dqd, J = 14.0, 7.5, 5.0 Hz, CH
AHBCH3), 1.80 (1 H, ddq, J = 14.0, 9.0, 7.5 Hz, CHA
H
BCH3), 2.08-2.21 [1 H, m, J = 7.0, 5.0, CH(CH3)2], 2.25 (1 H, br s, OH), 2.52 (1 H, dd, J = 5.0, 4.0 Hz, CHi-Pr), 3.74 (2 H, app t, J = 5.5 Hz, CH
2OH), 3.89 (1 H, app dt, J = 14.0, 5.5 Hz, CH
A
HBN), 4.01 (1 H, app dt, J = 14.0, 5.5 Hz, CHA
H
B
N), 4.39 (1 H, ddd, J = 9.0, 5.0, 4.0 Hz, CHO). 13C NMR (100 MHz, CDCl3): δ = 9.0, 18.8, 21.2, 22.3, 14.5, 43.1, 48.4, 59.8, 78.0, 151.6, 170.0. IR: 3436 (br, OH), 1749 (C=O), 1691 (C=O) cm-1.
syn
-3-(2-Hydroxyethyl)-5-isopropyl-6-[(
E
)-1-propenyl]-1,3-oxazinane-2,4-dione (10d): 1H NMR (300 MHz, CDCl3): δ = 0.97 [3 H, d, J = 7.0, CH(CH
3)2], 1.03 [3 H, d, J = 7.0 Hz, CH(CH
3)2], 1.71 (3 H, d, J = 7.0 Hz, CH
3CH=CH), 1.97 (1 H, t, J = 5.5 Hz, OH), 2.10 [1 H, m, J = 7.0 Hz, CH(CH3)2], 2.55 (1 H, dd, J = 7.0, 4.5 Hz, CHi-Pr), 3.74 (2 H, app dt, J = 5.5, 5.5 Hz, CH
2OH), 3.94-3.98 (2 H, m, CH
2N), 4.92 (1 H, app t, J = 7.0 Hz, CHO), 5.47 (1 H, ddd, J = 15.0, 7.0, 1.5 Hz, CH3CH=CH), 5.91 (1 H, dq, J = 15.0, 7.0 Hz, CH3CH=CH). 13C NMR (75 MHz, CDCl3): δ = 17.0, 19.7, 20.3, 24.8, 43.2, 49.5, 60.1, 76.6, 122.1, 132.7, 151.3, 169.7. IR: 3430 (br, OH), 1755 (C=O), 1699 (C=O) cm-1.
(5
S
,6
R
)-3-[(
S
)-1-Benzyl-2-hydroxyethyl]-6-ethyl-5-methyl-1,3-oxazinane-2,4-dione (10e): [α]D
20 -6.4 (c 0.47, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 0.82 (3 H, t, J = 7.5 Hz, CH2CH
3), 0.99 (3 H, d, J = 7.5, CH
3CH), 1.33 (2 H, m, CH
2
CH3), 2.50 (1 H, qd, J = 7.5, 3.5 Hz, CHCH3), 2.99 (1 H, dd, J = 14.0, 7.0 Hz, PhCH
ACHB), 3.16 (1 H dd, J = 14.0, 10.5 Hz, PhCHACH
B), 3.68 (2 H, obscured m, CHO), 3.82 (1 H, dd, J = 12.0, 4.0 Hz, CH
AHBOH), 4.01 (1 H, dd, J = 12.0, 7.0 Hz, CHA
H
BOH), 5.04 (1 H, app dtd, J = 10.5, 7.0, 4.0 Hz, CHN), 7.10-7.15 (5 H, m, Ph). 13C NMR (75 MHz, CDCl3): δ = 9.2, 9.5, 22.6, 33.7, 39.2, 56.5, 63.3, 78.4, 126.6, 128.5, 129.1, 137.4, 151.8, 173.1. IR: 3462 (br, OH), 1755 (C=O), 1700 (C=O) cm-1.
(5
S
,6
R
)-3-[(
S
)-1-Benzyl-2-hydroxyethyl]-6-ethyl-5-isopropyl-1,3-oxazinane-2,4-dione (10h): [α]D
20 -6.8 (c 0.59, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 0.84 (3 H, t, J = 7.5 Hz, CH2CH
3), 0.85 [3 H, d, J = 7.0 Hz, CH(CH
3)2], 0.92 [3 H, d, J = 7.0 Hz, CH(CH
3)2], 1.31-1.46 (1 H, dqd, J = 14.0, 7.5, 5.0 Hz, CH
AHBCH3), 1.45-1.61 (1 H, m, CHA
H
BCH3), 1.94-2.05 [1 H, m, CH(CH3)2], 2.18 (1 H, app t, J = 4.5 Hz, CHi-Pr), 2.53 (1 H, br s, OH), 2.99 (1 H, dd, J = 14.0, 7.0 Hz, CH
AHBPh), 3.13 (1 H, dd, J = 14.0, 10.5 Hz, CHA
H
BPh), 3.64 (1 H, obscured m, CHO), 3.82 (1 H, dd, J = 12.0, 4.0 Hz, CH
AHBOH), 4.02 (1 H, dd, J = 12.0, 7.0 Hz, CHA
H
BOH), 5.04-5.14 (1 H, app dtd, J = 10.5, 7.0, 4.0 Hz, CHN), 7.08-7.22 (5 H, m, Ph). 13C NMR (75 MHz, CDCl3): δ = 10.4, 20.2, 22.6, 23.4, 25.5, 34.3, 50.2, 56.5, 63.7, 79.4, 127.0, 128.9, 129.5, 135.0, 152.5, 171.4. IR: 3423 (br, OH), 1754 (C=O), 1691 (C=O) cm-1.
syn
-3-(2-Hydroxyethyl)-5-methyl-6-phenyl-1,3-oxazinane-2,4-dione (10i): 1H NMR (300 MHz, CDCl3): δ = 1.01 (3 H, d, J = 7.5 Hz, CH
3), 2.17 (1 H, s, OH), 2.99 (1 H, qd, J = 7.5, 3.5 Hz, CHCH3), 3.75-3.82 (2 H, m, CH
2OH), 3.97 (1 H, app dt, J = 14.0, 5.5 Hz, CH
A
HBN), 4.05 (1 H, app dt, J = 14.0, 5.5 Hz, CHA
H
B
N), 5.62 (1 H, d, J = 3.5 Hz, CHO), 7.24-7.38 (5 H, m, Ph-H). 13C NMR (75 MHz, CDCl3): δ = 10.4, 41.5, 44.6, 61.2, 78.1, 126.0, 129.2, 129.4, 134.4, 152.4, 173.2. IR: 3447 (br, OH), 1755 (C=O), 1703 (C=O) cm-1.
syn
-3-(2-Hydroxyethyl)-5-isopropyl-6-(4-methoxy-phenyl)-1,3-oxazinane-2,4-dione (10k): mp 79-81 °C.
1H NMR (300 MHz, CDCl3): δ = 0.87 [3 H, d, J = 7.0 Hz, CH(CH
3)2], 0.98 (3 H, d, J = 7.0 Hz, CH(CH
3)2], 1.96 [1 H, m, J = 7.0, 4.0 Hz, CH(CH3)2], 2.26 (1 H, br s, OH), 2.79 (1 H, t, J = 4.0 Hz, CHi-Pr), 3.83 (3 H, s, ArOCH
3), 3.81-3.87 (2 H, m, CH
2OH), 4.02 (1 H, app dt, J = 14.0, 5.5 Hz, CH
A
HBN), 4.16 (1 H, app dt, J = 14.0, 5.5 Hz, CHA
H
B
N), 5.71 (1 H, d, J = 4.0 Hz, CHO), 6.94 (2 H, d, J = 8.5 Hz, Ar-H), 7.29 (2 H, d, J = 8.5 Hz, Ar-H). 13C NMR (75 MHz, CDCl3): δ = 19.8, 23.1, 26.0, 44.7, 52.0, 55.7, 61.3, 78.4, 114.6, 126.7, 127.1, 152.9, 160.1, 171.4. IR: 3353 (br, OH), 1740 (C=O), 1691 (C=O) cm-1.
22
syn-1,3-Oxazinane-2,4-diones exhibit J
(
5,6) coupling constants of <4.5 Hz, whilst anti-1,3-oxazinane-2,4-diones exhibit J
(
5,6) coupling constants of >10.0 Hz; see ref. 13c, 14, 16.
23 An alternative mechanism involving zinc alkoxide-catalysed epimerisation of the α-stereocentres of syn-β-aryl-aldols 9i-l (or syn-β-aryl-1,3-oxazinane-2,4-diones 10i-l) was discounted because their acidities are similar to those of the α-stereocentres of syn-β-alkyl-aldols 9a-k that had been shown to rearrange with no loss of stereocontrol under these conditions.
24 A similar reversible retro-aldol/aldol mechanism has been proposed to explain the diastereoselectivity observed for reaction of metal enolates of N-acyl-oxazolidin-2-ones with ketones, see: Bartroli J.
Turmo E.
Belloc J.
Forn J.
J. Org. Chem.
1995,
60:
3000
25
N-Acyl-oxazolidin-2-one-anti-aldol 15 was prepared using Evans’ magnesium halide-catalysed protocol, see ref. 12.
26
anti
-3-(2-Hydroxyethyl)-5-methyl-6-phenyl-1,3-oxazinane-2,4-dione (16). 1H NMR (300 MHz, CDCl3): δ = 1.02 (3 H, d, J = 7.0 Hz, CH
3), 2.21 (1 H, br s, OH), 2.89 (1 H, dq, J = 11.5, 7.0 Hz, CHCH3), 3.77-3.80 (2 H, app t, J = 5.5 Hz, CH
2OH), 3.94 (1 H, dt, J = 14.0, 5.5 Hz, CH
A
HBN), 4.06 (1 H, app dt, J = 14.0, 5.5 Hz, CHA
H
B
N), 5.04 (1 H, d, J = 11.5 Hz, CHPh), 7.24-7.38 (5 H, m, Ph-H).
13C NMR (75 MHz, CDCl3): δ = 10.1, 40.4, 43.5, 59.6, 80.5, 126.1, 127.9, 128.7, 134.2, 151.1, 170.5. IR: 3435 (br, OH), 1755 (C=O), 1694 (C=O) cm-1.