Subscribe to RSS
DOI: 10.1055/s-2005-865218
Solid-Supported Sulfonylhydroxylamine as an Effective N-Aminating Agent of Anilines
Publication History
Publication Date:
20 April 2005 (online)
Abstract
An effective method for the synthesis of aryl hydrazines by amination of anilines using the solid-supported phenylsulfonylhydroxylamine was described. Treatment of aniline with the solid-supported aminating agent, followed by removal of the resin, provided the corresponding hydrazine in 21% yield. The resulting hydrazines were directly adapted to the solid-phase synthesis of indoles, providing nine naltrindole derivatives varying the substituents on the aromatic rings.
Key words
electrophilic aminations - hydrazines - indoles - naltrindoles - solid-phase synthesis
- For reviews on synthesis of heterocycles, see:
-
1a
Krchnak V.Holladay MW. Chem. Rev. 2002, 102: 61 -
1b
Franzen RG. J. Comb. Chem. 2000, 2: 195 -
1c
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 - For recent studies on synthesis of aryl hydrazines and their derivatives, see:
-
2a
Wang Z.Skerlj RT.Bridger GJ. Tetrahedron Lett. 1999, 40: 3543 -
2b
Wagaw S.Yang HB.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 6621 -
2c
Hartwig JF. Angew. Chem. Int. Ed. 1998, 37: 2090 -
2d
Demers JP.Klaubert DH. Tetrahedron Lett. 1987, 28: 4933 - 3 On the biological activity of indoles, see:
Sunberg RJ. Indoles Academic Press; London: 1996. and references therein - 4
Haddad N.Baron J. Tetrahedron Lett. 2002, 43: 2171 ; and references therein - 5
Hunsberger IM.Shaw ER.Fugger J.Ketcham R.Lednicer D. J. Org. Chem. 1956, 21: 394 - 6
Brown DW.Mahon MF.Ninan A.Sainsbury M.Shertzer HG. Tetrahedron 1993, 49: 8919 - 7 For a review on sulfonylhydroxylamine, see:
Tamura Y.Minamikawa J.Ikeda M. Synthesis 1977, 1 - For synthesis of sulfonylhydroxylamine, see:
-
8a
Glover EE.Rowbottom KT. J. Chem. Soc., Perkin Trans. 1 1976, 367 -
8b
Batori S.Timari G.Koczka I.Hermecz I. Bioorg. Med. Chem. Lett. 1996, 6: 1507 -
8c
Greck C.Bischoff L.Girard A.Hajicek J.Genet JP. Bull. Soc. Chim. Fr. 1994, 131: 429 - 9 Explosion in attempting to dry O-mesitylenesulfonyl-hydroxylamine has been reported, see:
Scopes DIC.Kluge AF.Edwards JA. J. Org. Chem. 1977, 42: 376 - For solid-supported reagent, see:
-
10a
Booth RJ.Hodges JC. Acc. Chem. Res. 1999, 32: 18 -
10b
Parlow JJ.Devraj RV.South MS. Curr. Opin. Chem. Biol. 1999, 3: 320 -
10c
Thompson LA. Curr. Opin. Chem. Biol. 2000, 4: 324 -
10d
Ley SV.Baxendale IR.Bream RN.Jackson PS.Leach AG.Longbottom DA.Nesi M.Scott JS.Storer RI.Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000, 3815 -
10e
Guillier F.Orain D.Bradley M. Chem. Rev. 2000, 100: 2091 -
11a
Portoghese PS.Sultana M.Nagase H.Takemori AE. J. Med. Chem. 1988, 31: 281 -
11b
Portoghese PS.Sultana M.Takemori AE. J. Med. Chem. 1990, 33: 1714 - 15
Robinson R. The Fischer Indole Synthesis Wiley-Interscience; New York: 1982. -
16a
Tanaka H.Ohno H.Kawamura K.Ohtake A.Nagase H.Takahashi T. Org. Lett. 2003, 5: 1159 -
16b
Ohno H.Tanaka H.Takahashi T. Synlett 2004, 508
References
Procedure for the Preparation of 7.
To a mixture of PS-TsCl (Argonout, 1.97 mmol/g, 2.0 g, 3.9 mmol) and N-Boc-hydroxylamine (1.05 g, 7.9 mmol) in THF (32 mL) was added THF solution (4 mL) of Et3N (1.1 mL, 7.9 mmol) slowly at 0 °C. The mixture was shaken for 1.5 h at r.t. After filtration of the mixture, the resulting resin was washed with THF, H2O, and THF, and dried in vacuo to give resin-supported N-Boc sulfonyl hydroxylamine 7 (2.6 g). IR (resin): 1475, 1396, 1173 cm-1. Anal. Found: C, 68.78; H, 7.40; N, 2.22; Cl, 0.02; S, 5.52%.
The ratio was estimated by 1H NMR measurement of the crude mixture.
14
Typical Experimental Procedure.
To resin-supported N-Boc sulfonyl hydroxylamine (7, 100 mg), TFA (1 mL, pre-cooled at 0 °C) was added at r.t., and the mixture was shaken for 1 min at r.t. After filtration of the mixture, the resulting resin was washed with H2O, THF, and CH2Cl2 (pre-cooled at 0 °C) to give the polystyrene-supported sulfonyl hydroxylamine 1B. The resulting resin was used for next amination without drying. To the resulting resin 1B was added aniline (27 µL, 0.29 mmol) in CH2Cl2 (0.5 mL, pre-cooled at 0 °C), and the mixture was shaken for 10 min at r.t. After filtration of the mixture followed by washing with CH2Cl2, the resulting resin were treated with CH2Cl2-HCl (10 M) in MeOH (1:1), filtered, and then washed with CH2Cl2-HCl (10 M) in MeOH (1:1). The combined filtrates were evaporated, and dried in vacuo to give of crude phenylhydrazine HCl (17.1 mg). Further purification was achieved by silica gel column chromatography followed by adding 10 M HCl in MeOH to give phenylhydrazine HCl (4.0 mg, 28 µmol).
The lower yield than previously reported [16a] was due to the different ways of estimation of the yield. The yield was determined by measurement of mass weight of cleavage product in the former paper, on the other hand in this paper the yield is isolated yield.
18Spectra of 8d: 1H NMR (400 MHz, CD3OD): δ = 0.13-0.23 (2 H, m), 0.52-0.61 (2 H, m), 0.93 (1 H, m), 1.30 (3 H, t, J = 7.6 Hz), 1.72 (1 H, d, J = 12.2 Hz), 2.28-2.50 (4 H, m), 2.56 (1 H, d, J = 15.9 Hz), 2.73 (1 H, d, J = 15.9 Hz), 2.73-2.90 (4 H, m), 3.17 (1 H, d, J = 18.6 Hz), 3.40 (1 H, d, J = 6.3 Hz), 5.59 (1 H, s), 6.53 (1 H, d, J = 8.1 Hz), 6.56 (1 H, d, J = 8.1 Hz), 7.00 (1 H, d, J = 1.7 Hz), 7.34 (1 H, d, J = 1.7 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.3, 14.6, 24.1, 25.1, 29.8, 32.8, 45.0, 60.4, 63.4, 74.4, 85.7, 111.1, 113.0, 118.2, 119.6, 119.7, 124.4, 126.0, 129.3, 130.2, 131.8, 131.9, 135.8, 140.8, 144.5. MS (ESI): 521 [M + H]+.
Spectra of 8e: 1H NMR (400 MHz, CD3OD): δ = 0.13-0.22 (2 H, m), 0.51-0.60 (2 H, m), 0.93 (1 H, m), 1.73 (1 H, d, J = 12.5 Hz), 2.28-2.47 (4 H, m), 2.49 (3 H, s), 2.57 (1 H, d, J = 15.9 Hz), 2.68-2.85 (2 H, m), 2.76 (1 H, d, J = 15.9 Hz), 3.17 (1 H, d, J = 18.6 Hz), 3.40 (1 H, d, J = 6.3 Hz), 5.59 (1 H, s), 6.52 (1 H, d, J = 8.1 Hz), 6.55 (1 H, d, J = 8.1 Hz), 6.90 (1 H, d, J = 8.4 Hz), 7.16 (1 H, d, J = 8.4 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.3, 14.1, 24.1, 29.8, 32.7, 45.0, 60.4, 63.5, 74.4, 85.8, 111.8, 117.8, 118.2, 119.3, 119.6, 120.9, 125.9, 126.2, 128.4, 131.5, 131.9, 138.5, 140.8, 144.5. MS (ESI): 463 [M + H]+.
Spectra of 8f: 1H NMR (400 MHz, CD3OD): δ = 0.15-0.24 (2 H, m), 0.52-0.62 (2 H, m), 0.95 (1 H, m), 1.26-1.42 (18 H, m), 1.74 (1 H, m), 2.35-2.49 (4 H, m), 2.71-2.81 (3 H, m), 3.18-3.26 (2 H, m), 3.36 (1 H, d, J = 6.3 Hz), 5.61 (1 H, s), 6.53 (1 H, d, J = 8.2 Hz), 6.56 (1 H, d, J = 8.2 Hz), 7.05 (1 H, d, J = 1.7 Hz), 7.20 (1 H, d, J = 1.7 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.3, 4.7, 10.3, 24.2, 31.9, 32.2, 33.0, 35.6, 36.3, 36.5, 44.9, 48.0, 60.5, 63.9, 75.0, 86.6, 107.0, 108.9, 115.2, 118.2, 119.5, 122.6, 125.9, 130.9, 132.1, 140.1, 140.8, 144.3, 144.8, 145.1. MS (ESI): 527 [M + H]+.
Spectra of 8g: 1H NMR (400 MHz, CD3OD): δ = 0.15-0.24 (2 H, m), 0.52-0.61 (2 H, m), 0.94 (1 H, m), 1.73 (1 H, m), 1.81-1.91 (4 H, m), 2.31-2.49 (4 H, m), 2.59 (1 H, d, J = 15.9 Hz), 2.75-2.87 (7 H, m), 3.17 (1 H, d, J = 18.6 Hz), 3.41 (1 H, d, J = 5.9 Hz), 5.60 (1 H, s), 6.52 (1 H, d, J = 8.2 Hz), 6.54 (1 H, d, J = 8.2 Hz), 6.67 (1 H, d, J = 8.1 Hz), 7.10 (1 H, d, J = 8.1 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.2, 24.2, 24.2, 24.9, 25.4, 30.0, 30.6, 32.7, 45.0, 49.9, 60.4, 63.5, 74.4, 86.3, 116.7, 118.1, 119.4, 120.4, 121.5, 125.3, 125.9, 129.5, 131.3, 132.1, 137.7, 140.8, 144.5, 150.4. MS (ESI): 469 [M + H]+.
Spectra of 8h: 1H NMR (400 MHz, CD3OD): δ = 0.12-0.22 (2 H, m), 0.49-0.60 (2 H, m), 0.92 (1 H, m), 1.75 (1 H, d, J = 12.7 Hz), 2.27-2.46 (4 H, m), 2.66 (1 H, d, J = 15.6 Hz), 2.71-2.76 (1 H, m), 2.83 (1 H, d, J = 18.6 Hz), 2.84 (1 H, d, J = 15.9 Hz), 3.17 (1 H, d, J = 18.6 Hz), 3.42 (1 H, d, J = 6.3 Hz), 5.68 (1 H, s), 6.54 (1 H, d, J = 8.2 Hz), 6.57 (1 H, d, J = 8.2 Hz), 7.45-7.49 (1 H, m), 7.51-7.55 (1 H, m), 7.58 (1 H, s), 8.19-8.23 (2 H, m). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.7, 10.2, 24.1, 29.7, 32.7, 44.8, 60.3, 63.3, 74.4, 85.7, 112.6, 118.0, 119.5, 119.7, 121.7, 122.8, 123.5, 123.9, 125.3, 125.8, 125.9, 126.8, 128.2, 129.9, 131.7, 132.3, 140.6, 144.4. MS (ESI): 499 [M + H]+.
Spectra of 8i: 1H NMR (400 MHz, CD3OD): δ = 0.12-0.24 (2 H, m), 0.51-0.62 (2 H, m), 0.87-0.97 (1 H, m), 1.73-1.76 (1 H, m), 2.28-2.50 (4 H, m), 2.63 (1 H, d, J = 14.6 Hz), 2.72-2.88 (2 H, m), 2.81 (1 H, d, J = 15.6 Hz), 3.18 (1 H, d, J = 18.6 Hz), 3.42 (1 H, d, J = 6.6 Hz), 3.81 (1 H, d, J = 22.0 Hz), 3.90 (1 H, d, J = 21.7 Hz), 5.63 (1 H, s), 6.54 (1 H, d, J = 8.1 Hz), 6.56 (1 H, d, J = 8.1 Hz), 7.15-7.19 (1 H, m), 7.26-7.30 (1 H, m), 7.31 (1 H, d, J = 8.1 Hz), 7.41 (1 H, d, J = 8.3 Hz), 7.46 (1 H, d, J = 7.3 Hz), 7.68 (1 H, d, J = 7.6 Hz). 13C NMR (150.8 MHz, CD3OD): δ = 4.2, 4.8, 10.3, 24.2, 30.1, 32.7, 35.2, 45.0, 60.4, 63.5, 74.4, 86.1, 112.2, 112.4, 118.2, 118.5, 119.6, 119.8, 125.6, 126.0, 126.1, 126.5, 127.4, 127.6, 131.0, 132.1, 135.5, 137.8, 140.9, 143.5, 144.4, 144.6. MS (ESI): 503 [M + H]+.