Abstract
Alkoxyl radicals 9 (XO• ), generated by photolysis of thiocarbamates 8 , were found to initiate and undergo self-terminating radical oxygenations, in which
alkynes are transformed into ketones. With this result, we have shown that every major
class of organic O -centered radicals can act as O -atom synthon in this sequence, demonstrating the generality of this novel concept
in radical chemistry. Theoretical investigations of the terminating homolytic scission
of the O-X bond reveal that resonance stabilization in the cleaved radical X• (e.g. benzyl, allyl) both lowers the activation barrier, ΔE‡
, and increases the exothermicity, whereas radical stabilization by inductive effects
(as in tert -butyl) only reduces ΔE‡
, compared to non-stabilized radicals. The experimental results indicate that the
final homolytic bond scission is not the only crucial step in this mechanism, but
that generation of XO• as well as the initial radical addition to the alkyne triple bond must be of similar
importance.
Key words
radicals - alkynes - oxidations - photochemistry - computational chemistry
References
<A NAME="RC01505SS-1A">1a </A>
Linker T.
Schmittel M.
Radikale und Radikalionen in der Organischen Synthese
Wiley-VCH;
Weinheim:
1999.
<A NAME="RC01505SS-1B">1b </A>
Hartung J.
Suárez E.
Rodriguez MS.
Boukouvalas J.
Haynes RK. In Radicals in Organic Synthesis
Vol. 2:
Renaud P.
Sibi M.
Wiley-VCH;
Weinheim:
2001.
Chap 5.
<A NAME="RC01505SS-2">2 </A>
Fossey J.
Lefort D.
Sorba J.
Free Radicals in Organic Chemistry
Masson;
Paris:
1995.
<A NAME="RC01505SS-3">3 </A>
To our knowledge, rate data for the addition of alkoxyl radicals to alkynes have not
been determined so far.
XO•
= NO3
• :
<A NAME="RC01505SS-4A">4a </A>
Wille U.
Plath C.
Liebigs Ann./Recl.
1997,
111
<A NAME="RC01505SS-4B">4b </A>
Wille U.
Lietzau L.
Tetrahedron
1999,
55:
10119
<A NAME="RC01505SS-4C">4c </A>
Lietzau L.
Wille U.
Heterocycles
2001,
55:
377
<A NAME="RC01505SS-4D">4d </A>
Wille U.
Chem.-Eur. J.
2002,
8:
340
<A NAME="RC01505SS-4E">4e </A>
Stademann A.
Wille U.
Aust. J. Chem.
2004,
57:
1055
<A NAME="RC01505SS-5">5 </A> XO•
= SO4
-
• :
Wille U.
Org. Lett.
2000,
2:
3485
<A NAME="RC01505SS-6">6 </A> XO
• = HO
• :
Wille U.
Tetrahedron Lett.
2002,
43:
1239
<A NAME="RC01505SS-7">7 </A> XO
• = RC(O)O
• :
Wille U.
J. Am. Chem. Soc.
2002,
124:
14
<A NAME="RC01505SS-8">8 </A> XO
• = ROC(O)O•
, ROC(O)C(O)O•
, R2 NC(O)O
• , R2 NO•
:
Jargstorff C.
Wille U.
Eur. J. Org. Chem.
2003,
2173
<A NAME="RC01505SS-9">9 </A> The mechanism shown in Scheme 1 for NO3
• induced self-terminating radical oxygenations was verified by DFT calculations:
Dreessen T.
PhD Thesis
Universität Kiel;
Germany:
2004.
Examples for the intermolecular addition of O -centered radicals to CºC triple bonds:
<A NAME="RC01505SS-10A">10a </A>
Walling C.
Clark RT.
J. Am. Chem. Soc.
1974,
96:
4530
<A NAME="RC01505SS-10B">10b </A>
Walling C.
El-Taliawi G.
J. Am. Chem. Soc.
1973,
95:
848
<A NAME="RC01505SS-10C">10c </A>
Bottle S.
Busfield WK.
Jenkins ID.
Skelton BW.
White AH.
Rizzardo E.
Solomon DH.
J. Chem. Soc., Perkin Trans. 2
1991,
1001
<A NAME="RC01505SS-11">11 </A>
Because of the strong transannular interactions, cycloalkyne 1 had proven to be a very suitable trial horse for studying self-terminating radical
oxygenations.4-8
<A NAME="RC01505SS-12">12 </A>
Kim S.
Lim CJ.
Song S.-E.
Kang H.-Y.
Synlett
2001,
688
<A NAME="RC01505SS-13">13 </A>
The up-scaling of photochemical reactions is normally not straight forward, because,
in contrast to thermal reactions, generally a non-linear increase of both irradiation
time and solvent amount is required. We have found earlier that the best way to accomplish
photo-induced, self-terminating radical oxygenations on preparative scales is by accordingly
increasing the amount of reaction flasks containing up to 10 mM of reactants (alkyne
and radical precursor), irradiating them simultaneously and combining them for work-up.8
<A NAME="RC01505SS-14">14 </A>
No attempt was made to separate 5 and 6 . Earlier work has shown that the products are formed with a ratio of 5 :6 = 3:1.4a
<A NAME="RC01505SS-15">15 </A>
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman RR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski W.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision B.04
Gaussian, Inc.;
Pittsburgh PA:
2003.
Actually, the energy barrier for the addition of alkyl radicals to the carbonyl oxygen
was calculated to be significantly higher than for the addition to the carbon site
of a carbonyl bond:
<A NAME="RC01505SS-16A">16a </A>
Hippler H.
Viskolcz B.
Phys. Chem. Chem. Phys.
2002,
4:
4663
<A NAME="RC01505SS-16B">16b </A>
Henry DJ.
Coote ML.
Gómez-Balderas R.
Radom L.
J. Am. Chem. Soc.
2004,
126:
1732
<A NAME="RC01505SS-17">17 </A>
Henry DJ.
Parkinson CJ.
Radom L.
J. Phys. Chem. A
2002,
106:
7927 ; and literature cited therein
<A NAME="RC01505SS-18">18 </A>
Steric repulsion by the bulky methyl substituents may be the reason for the slightly
longer O-X bond in the tert -butyl substituted radical 12 .
<A NAME="RC01505SS-19">19 </A>
A comparable result was found for the reverse addition of a methyl radical to the
oxygen atom in formaldehyde, calculated at the G3MP2//B3LYP/SVP level of theory.16a
<A NAME="RC01505SS-20">20 </A> This is in agreement with literature, where comparison of the reaction barriers
for radical reactions with these two functionals has shown the B3LYP barriers to be
somewhat too low, whereas the BHandHLYP barriers are slightly too high in many cases;
see for example:
Wang Y.
Grimme S.
Zipse H.
J. Phys. Chem. A
2004,
108:
2324
<A NAME="RC01505SS-21">21 </A>
BHandHLYP calculations performed with the cc-pVDZ, aug-cc-pVDZ and cc-pVTZ basis set,
respectively, resulted in comparable results for ΔE‡
and ΔE than obtained with the 6-311G** basis set. MP2 calculations with these basis
sets generally reflected the results of the B3LYP method.