Abstract
The moss Physcomitrella patens is a newly established model plant that is widely used for the characterization of gene function by targeted gene knockout or over-expression. The target gene disruption occurs in both the nuclear and chloroplast genomes. We applied DNA microarray technology to the P. patens plastid genome for large-scale analysis of transcripts. A microarray was constructed containing 108 DNA fragments to detect all annotated plastid genes. We analyzed the transcript profile in a knockout transformant for the arginine tRNA gene, trnR-CCG, and confirmed previous results that rbcL and psaI transcripts accumulate in similar levels to wild-type moss, and accD transcript level is higher than those of wild-type moss. Additionally, the plastid DNA microarray revealed that most plastid genes were expressed at similar levels in wild-type and transformant mosses. This indicates that trnR-CCG is not essential for the expression of plastid genes.
Key words
Chloroplast -
Physcomitrella patens
- transcript profiling - microarray.
References
-
1
Erickson B., Stern D. B., Higgs D. C..
Microarray analysis confirms the specificity of a Chlamydomonas reinhardtii chloroplast RNA stability mutant.
Plant Physiology.
(2005);
137
534-544
-
2
Kenrick P., Crane P. R..
The origin and early evolution of plants on land.
Nature.
(1997);
389
33-39
-
3
Legen J., Kemp S., Krause K., Profanter B., Herrmann R. G., Maier R. M..
Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries.
The Plant Journal.
(2002);
31
171-188
-
4
Maliga P..
Plastid transformation in higher plants.
Annual Review of Plant Biology.
(2004);
55
289-313
-
5 Maniatis T., Fritsch E. M., Sambroook J.. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY; Cold Spring Harbor Press (1989)
-
6
Miyata Y., Sugiura C., Kobayashi Y., Hagiwara M., Sugita M..
Chloroplast ribosomal S14 protein transcript is edited to create a translation initiation codon in the moss Physcomitrella patens.
.
Biochimica et Biophysica Acta.
(2002);
1576
346-349
-
7
Nakamura T., Furuhashi Y., Hasegawa K., Hashimoto H., Watanabe K., Obokata J., Sugita M., Sugiura M..
Array-based analysis on tobacco plastid transcripts: preparation of a genomic microarray containing all genes and all intergenic regions.
Plant and Cell Physiology.
(2003);
44
861-867
-
8
Qiu Y. L., Palmer J. D..
Phylogeny of early land plants: insights from genes and genomes.
Trends in Plant Science.
(1999);
4
26-30
-
9
Quackenbush J..
Microarray data normalization and transformation.
Nature Genetics.
(2002);
32
496-501
-
10
Schaefer D. G..
Gene targeting in Physcomitrella patens.
.
Current Opinion of Plant Biology.
(2001);
4
143-150
-
11
Schaefer D. G., Zrӱd J. P..
Efficient gene targeting in the moss Physcomitrella patens.
.
The Plant Journal.
(1997);
11
1195-1206
-
12
Sugiura C., Sugita M..
Plastid transformation reveals that moss tRNAArg-CCG is not essential for plastid function.
The Plant Journal.
(2004);
40
314-321
-
13
Sugiura C., Kobayashi Y., Aoki S., Sugita C., Sugita M..
Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus.
Nucleic Acids Research.
(2003);
31
5324-5331
-
14
Svab Z., Maliga P..
High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene.
Proceedings of the National Academy of Sciences of the USA.
(1993);
90
913-917
M. Sugita
Center for Gene Research
Nagoya University
Nagoya 464-8602
Japan
Email: sugita@gene.nagoya-u.ac.jp
Guest Editor: R. Reski