Abstract
A brief introduction is presented with some thought on the origin of meiosis. Subsequently, a sequential overview of the diverse processes that take place during meiosis is provided, with an eye to similarities and differences between the different eukaryotic systems. In the final part, we try to summarize the available core meiotic mutants and make a comprehensive comparison for orthologous genes between fungal, plant, and animal systems.
Key words
Pairing - synapsis - meiotic recombination - segregation - meiotic mutants.
References
-
1
Agashe B., Prasad C. K., Siddiqi I..
Identification and analysis of DYAD: a gene required for meiotic chromosome organization and female meiotic progression in Arabidopsis.
.
Development.
(2002);
129
3935-3943
-
2
Albini S. M., Jones G. H..
Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing.
Chromosoma.
(1987);
95
324-338
-
3
Allers T., Lichten M..
Differential timing and control of noncrossover and crossover recombination during meiosis.
Cell.
(2001);
106
47-57
-
4
Amon A..
The spindle checkpoint.
Current Opinion in Genetics and Development.
(1999);
9
69-75
-
5
Armstrong S. J., Christopher F., Franklin H., Jones G. H..
Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana.
.
Journal of Cell Science.
(2001);
114
4207-4217
-
6
Aragon-Alcaide L., Reader S., Beven A., Shaw P., Miller T., Moore G..
Association of homologous chromosomes during floral development.
Current Biology.
(1997);
7
905-908
-
7
Armstrong S. J., Jones G. H..
Female meiosis in wild-type Arabidopsis thaliana and in two meiotic mutants.
Sexual Plant Reproduction.
(2001);
13
177-183
-
8
Armstrong S. J., Franklin F. C. H., Jones G. H..
A meiotic time-course for Arabidopsis thaliana.
.
Sexual Plant Reproduction.
(2003);
16
141-149
-
9
Armstrong S. J., Jones G. H..
Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana.
.
Journal of Experimental Botany.
(2003);
54
1-10
-
10
Ault J. G., Nicklas R. B..
Tension, microtubule rearrangements, and the proper distribution of chromosomes in mitosis.
Chromosoma.
(1989);
98
33-39
-
11
Azumi Y., Liu D., Zhao D., Li W., Wang G., Hu Y., Ma H..
Homologue interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein.
EMBO Journal.
(2002);
21
3081-3095
-
12
Bahler J., Wyler T., Loidl J., Kohli J..
Unusual nuclear structures in meiotic prophase of fission yeast: A cytological analysis.
Journal of Cell Biology.
(1993);
121
241-256
-
13
Bai X., Peirson B. N., Dong F., Xue C., Makaroff C. A..
Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis.
.
Plant Cell.
(1999);
11
417-430
-
14
Barnes T. M., Kohara Y., Coulson A., Hekimi S..
Meiotic recombination, noncoding DNA and genomic organisation in Caenorhabditis elegans.
.
Genetics.
(1995);
141
159-179
-
15
Bass H. W., Marshall W. F., Sedat J. W., Agard D. A., Cande W. Z..
Telomeres cluster de novo before the initiation of synapsis; a 3-dimensional spatial analysis of telomere positions before and during meiotic prophase.
Journal of Cell Biology.
(1997);
137
5-18
-
16
Bass H. W., Riera-Lizarazu O., Ananiev E. V., Bordoli S. J., Rines H. W., Phillips R. L., Sedat J. W., Agard D. A., Cande W. Z..
Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase.
Journal of Cell Science.
(2000);
113
1033-1042
-
17
Baudat F., Nicolas A..
Clustering of meiotic double-strand breaks on yeast chromosome III.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
5213-5218
-
18 Bell G.. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. Berkeley, CA; University of California Press (1982)
-
19
Bennett M. D., Smith J. B..
The effect of polyploidy on meiotic duration and pollen development in cereal anthers.
Proceedings of the Royal Society of London Series B.
(1972);
181
81-107
-
20
Bhatt A. M., Lister C., Page T., Fransz P., Findlay K., Jones G. H., Dickinson H. G., Dean C..
The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family.
Plant Journal.
(1999);
19
463-472
-
21
Bhatt A. M., Canales C., Dickinson H. G..
Plant meiosis: the means to 1 N.
Trends in Plant Science.
(2001);
6
114-121
-
22
Bishop D., Park D., Xu L., Kleckner N..
DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation and cell cycle progression.
Cell.
(1992);
69
439-456
-
23
Blat Y., Protacio R. U., Hunter N., Kleckner N..
Physical and functional interactions among basic chromosome organisational features govern early steps of meiotic chiasma formation.
Cell.
(2002);
111
791-802
-
24
Borde V., Goldman A. S. H., Lichten M..
Direct coupling between meiotic DNA replication and recombination initiation.
Science.
(2000);
290
806-809
-
25
Bullard S. A., Kim S., Galbraith A. M., Malone R. E..
Double-strand breaks at the HIS2 recombination hot spot in Saccharomyces cerevisiae.
.
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
13054-13059
-
26
Bundock P., Hooykaas P..
Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants.
Plant Cell.
(2002);
14
2451-2462
-
27
Cai X., Makaroff C. A..
The dsy10 mutation of Arabidopsis results in desynapsis and a general breakdown in meiosis.
Sexual Plant Reproduction.
(2001);
14
63-67
-
28
Cao L., Alani E., Kleckner N..
A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae.
.
Cell.
(1990);
61
1089-1101
-
29
Carlson P. S..
Mitotic crossing-over in a higher plant.
Genetical Research in Cambridge.
(1974);
24
109-122
-
30
Carlton P. M., Cowan C. R., Cande W. Z..
Directed motion of telomeres in the formation of the meiotic bouquet revealed by time course and simulation analysis.
Molecular Biology of the Cell.
(2003);
14
2832-2843
-
31
Caryl A. P., Armstrong S. J., Jones G. H., Franklin F. C. H..
A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1.
.
Chromosoma.
(2000);
109
62-71
-
32
Caryl A. P., Jones G. H., Franklin F. C. H..
Dissecting plant meiosis using Arabidopsis thaliana mutants.
Journal of Experimental Botany.
(2003);
54
25-38
-
33
Cavalier-Smith T..
Origins of the machinery of recombination and sex.
Heredity.
(2002);
88
125-141
-
34
Chan A., Cande W. Z..
Maize meiotic spindles assemble around chromatin and do not require paired chromosomes.
Journal of Cell Science.
(1998);
111
3507-3515
-
35
Chandley A. C., Bateman A. J..
Timing of spermatogenesis in Drosophila melanogaster using tritiated thymidine.
Nature.
(1962);
193
299-300
-
36
Chaudhury A. M., Lavithis M., Taylor P. E., Craig S., Singh M. B., Signer E. R., Knox R. B., Dennis E. S..
Genetic control of male fertility in Arabidopsis thaliana: structural analysis of premeiotic developmental mutants.
Sexual Plant Reproduction.
(1994);
7
17-28
-
37
Chen C., Marcus A., Li W., Hu Y., Vielle Calzada J.-P., Grossniklaus U., Cyr R. J., Ma H..
The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis.
Development.
(2002);
129
2401-2409
-
38
Civardi L., Xia T., Edwards K. J., Schnable P. S., Nikolau B. J..
The relationship between genetic and physical distances in the cloned a1-sh2 interval of Zea mays L. genome.
Proceedings of the National Academy of Sciences of the USA.
(1994);
91
8268-8272
-
39
Cleveland L. R..
The origin and evolution of meiosis.
Science.
(1947);
105
287-289
-
40
Cliften P., Sudarsanam P., Desikan A., Fulton L., Fulton B., Majors J., Waterston R., Cohen B. A., Johnston M..
Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
Science.
(2003);
301
71-76
-
41
Cohen P. E., Pollard J. W..
Regulation of meiotic recombination and prophase I progression in mammals.
BioEssays.
(2001);
23
996-1009
-
42
Copenhaver G. P., Browne W. E., Preuss D..
Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads.
Proceedings of the National Academy of Sciences of the USA.
(1998);
95
247-252
-
43
Couteau F., Belzile F., Horlow C., Grandjean O., Vezon D., Doutriaux M. P..
Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis.
.
Plant Cell.
(1999);
11
1623-1634
-
44
Das O. P., Levi-Minzi S., Koury M., Benner M., Messing J..
A somatic gene rearrangement contributing to genetic diversity in maize.
Proceedings of the National Academy of Sciences of the USA.
(1990);
87
7809-7813
-
45
Davis L., Smith G. R..
Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe.
.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
8395-8402
-
46
Dawe R. K..
Meiotic chromosome organization and segregation in plants.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1998);
49
371-395
-
47 Dawkins R.. The Extended Phenotype. Oxford; Oxford University Press (1982)
-
49 Dernburg A. F., Sedat J. W., Cande W. Z., Bass H. W.. Cytology of telomeres. Blackburn, E. H. and Grieder, C. W., eds.
Telomeres
. Cold Spring Harbor, New York; Cold Spring Harbor Laboratory Press (1995): 295-337
-
50
Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A. M..
Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis.
Cell.
(1998);
94
387-398
-
51
de Rooij D. G..
Proliferation and differentiation of spermatogonial stem cells.
Reproduction.
(2001);
121
347-354
-
52
Dickinson H..
The regulation of alternation of generation in flowering plants.
Biological Reviews of the Cambridge Philosphical Society.
(1994);
69
419-422
-
53
Dresser M. E..
Chromosome behaviour in Saccharomyces cerevisiae and (mostly) mammals.
Mutation Research.
(2000);
451
107-127
-
54
Edelmann W., Cohen P. E., Kane M., Lau K., Morrow B., Bennett S., Umar A., Kunkel T., Cattoretti G., Chaganti R.. et al. .
Meiotic pachytene arrest in MLH1-deficient mice.
Cell.
(1996);
85
1125-1134
-
55
Egel-Mitani M., Olson L. W., Egel R..
Meiosis in Aspergillus nidulans; another example for lacking synaptonemal complexes in the absence of crossover interference.
Hereditas.
(1982);
97
179-187
-
56
Eijpe M., Heyting C., Gross B., Jessberger R..
Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes.
Journal of Cell Science.
(2000);
113
673-682
-
57
Farmer J. B., Moore J. E. S..
The maiotic (sic) phase in animals and plants.
Quarterly Journal of Microscopical Science.
(1905);
48
489-557
-
58
Forsburg S. L..
Only connect: Linking meiotic DNA replication to chromosome dynamics.
Molecular Cell.
(2002);
9
703-711
-
59
Franklin A. E., McElver J., Sunjevaric I., Rothstein R., Bowen B., Cande W. Z..
Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase.
Plant Cell.
(1999);
11
809-824
-
60
Fransz P., Armstrong S., Alonso-Blanco C., Fischer T. C., Torres-Ruiz R. A., Jones nal G. H..
Cytogenetics for the model system Arabidopsis thaliana.
.
Plant Journal.
(1998);
13
867-876
-
61
Gallego M. E., Jeanneau M., Granier F., Bouchez D., Bechtold N., White C. I..
Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity.
Plant Journal.
(2001);
25
31-41
-
62
Garcia V., Bruchet H., Camescasse D., Granier F., Bouchez D., Tissier A..
AtATM is essential for meiosis and the somatic response to DNA damage in plants.
Plant Cell.
(2003);
15
119-132
-
63
Gilbertson L. A., Stahl F. W..
A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae.
.
Genetics.
(1996);
144
27-41
-
64
Gill K. S., Gill B. S., Endo T. R., Boyko E. V..
Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat.
Genetics.
(1996);
143
1011-1012
-
65
Glover J., Grelon M., Craig S., Chaudhury A., Dennis E..
Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis.
Plant Journal.
(1998);
15
345-356
-
66
Goedecke W., Eijpe M., Offenberg H. H., van Aalderen M., Heyting C..
MRE11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis.
Nature Genetics.
(1999);
23
194-198
-
67
Goldway M., Sherman A., Zenvirth D., Arbel T., Simchen G..
A short chromosomal region with major roles in yeast chromosome III meiotic disjunction, recombination and double-strand breaks.
Genetics.
(1993);
133
159-169
-
68
Golubovskaya I. N..
Genetic control of meiosis.
International Review of Cytology.
(1979);
58
247-290
-
69
Gottschalk W., Klein H. D..
The influence of mutated genes on sporogenesis. A survey of the genetic control of meiosis in Pisum sativum.
.
Theoretical and Applied Genetics.
(1976);
48
23-24
-
70
Goyon C., Lichten M..
Timing of molecular events in meiosis in Saccharomyces cerevisiae: Stable heteroduplex DNA is formed late in meiotic prophase.
Molecular and Cellular Biology.
(1993);
13
373-382
-
71
Grelon M., Vezon D., Gendrot G., Pelletier G..
ATSPO11-1 is necessary for efficient meiotic recombination in plants.
EMBO Journal.
(2001);
20
589-600
-
72
Grelon M., Gendrot G., Vezon D., Pelletier G..
The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs.
Plant Journal.
(2003);
35
465-475
-
73
Haber J. E..
DNA recombination: the replication connection.
Trends in Biochemical Sciences.
(1999);
24
271-275
-
74
Handel M. A., Cobb J., Eaker S..
What are the spermatocyte's requirements for successful meiotic division?.
Journal of Experimental Zoology.
(1999);
285
243-250
-
75
Harrison B. J., Carpenter R..
Somatic crossing-over in Antirrhinum majus.
.
Heredity.
(1977);
38
169-189
-
76
Hartung F., Puchta H..
Isolation of the complete cDNA of the Mre11 homologue of Arabidopsis (accession No. AJ243822) indicates conservation of DNA recombination mechanisms between plants and other eukaryotes.
Plant Physiology.
(1999);
121
312
-
77
Hartung F., Puchta H..
Molecular characterization of two paralogous SPO11 homologues in Arabidopsis thaliana.
.
Nucleic Acids Research.
(2000);
28
1548-1554
-
78
Hassold T., Hunt P..
To err (meiotically) is human: the genesis of human aneuploidy.
Nature Reviews in Genetics.
(2001);
2
280-291
-
79
Hassold T., Merrill M., Adkins K., Freeman S., Sherman S..
Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16.
American Journal of Human Genetics.
(1995);
57
867-874
-
80
Havekes F. W. J., de Jong J. H., Heyting C..
Comparative analysis of female and male meiosis in three meiotic mutants of tomato.
Genome.
(1997);
40
879-886
-
81
Hawley R. S., Arbel T..
Yeast genetics and the fall of the classical view of meiosis.
Cell.
(1993);
72
301-303
-
82
Hawley R. S., Theurkauf W. E..
Requiem for distributive segregation: achiasmate segregation in Drosophila females.
Trends in Genetics.
(1993);
9
310-317
-
83
He C., Mascarenhas J. P..
MEI1, an Arabidopsis gene required for male meiosis: isolation and characterization.
Sexual Plant Reproduction.
(1998);
11
199-207
-
84
Heller C. G., Clermont Y..
Spermatogenesis in man: an estimate of its duration.
Science.
(1963);
140
184-186
-
85
Heslop-Harrison J. S..
The molecular cytogenetics of plants.
Journal of Cell Science.
(1991);
100
15-21
-
86
Heyting C..
Synaptonemal complexes: Structure and function.
Current Opinion in Cell Biology.
(1996);
8
389-396
-
87 Heyting C., Dietrich A. J. J., de Jong J. H., Hartsuiker E.. Immunocytochemical techniques applied to meiotic chromosomes. Gosden, J. R. Methods in Molecular Biology, Vol. 29: Chromosome Analysis Protocols. Totowa, NJ; Humana Press Inc. (1994): 287-301
-
88
Hillers K. J., Villeneuve A. M..
Chromosome-wide control of meiotic crossing over in C. elegans.
.
Current Biology.
(2003);
13
1641-1647
-
89
Hülskamp M., Parekh N. S., Grini P., Schneitz K., Zimmermann I., Lolle S. J., Pruitt R. E..
The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana.
.
Developmental Biology.
(1997);
187
114-124
-
90
Irniger S., Piatti S., Michaelis C., Nasmyth K..
Genes involved in sister chromatid separation are needed for B-type cycling proteolysis in budding yeast.
Cell.
(1995);
81
269-278
-
91
Jang J. K., Sherizen D. E., Bhagat R., Manheim E. A., McKim K. S..
Relationship of DNA double-strand breaks to synapsis in Drosophila.
.
Journal of Cell Science.
(2003);
116
3069-3077
-
92
Kaul M. L. H., Murthy T. G. K..
Mutant genes affecting higher plant meiosis.
Theoretical and Applied Genetics.
(1985);
70
449-466
-
93
Kee K., Keeney S..
Functional interactions between Spo11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae.
.
Genetics.
(2002);
160
111-122
-
94
Keeney S..
The mechanism and control of meiotic recombination initiation.
Current Topics in Developmental Biology.
(2001);
52
1-53
-
95
Klapholz S., Waddell C. S., Esposito R. E..
The role of the Spo11 gene in meiotic recombination in yeast.
Genetics.
(1985);
110
187-216
-
96
Kleckner N..
Meiosis: how could it work?.
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
8167-8174
-
98
Klein S., Zenvirth D., Dror V., Barton A. B., Kaback D. B., Simchen G..
Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes.
Chromosoma.
(1996);
105
276-284
-
99
Klein F., Mahr P., Galova M., Buonomo S. C., Michaelis C., Nairz K., Nasmyth K..
A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis.
Cell.
(1999);
98
91-103
-
100
Klimyuk V. I., Jones J. D. G..
AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression.
Plant Journal.
(1997);
11
1-14
-
101
Koduro P. R. K., Rao M. K..
Cytogenetics of synaptic mutants in higher plants.
Theoretical and Applied Genetics.
(1981);
59
197-214
-
102
Kohli J., Bahler J..
Homologous recombination in fission yeast: Absence of crossover interference and synaptonemal complex.
Experientia.
(1994);
50
295-306
-
103
Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B..
Different temporal and spatial gene expression patterns occur during anther development.
Plant Cell.
(1990);
2
1201-1224
-
104
Koren A., Ben-Aroya S., Kupiec M..
Control of meiotic recombination initiation: a role for the environment?.
Current Genetics.
(2002);
42
129-139
-
105
Krausz C., Forti G., McElreavey K..
The Y chromosome and male fertility and infertility.
International Journal of Andrology.
(2003);
2
70-75
-
106
Lambie E. J., Roeder G. S..
A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences.
Cell.
(1988);
52
863-873
-
107
Lichten M..
Meiotic recombination: Breaking the genome to save it.
Current Biology.
(2001);
11
253-256
-
108
Lichten M., Goldman A. S. H..
Meiotic recombination hotspots.
Annual Review of Genetics.
(1995);
29
423-444
-
109
Lebel E. G., Masson J., Bogucki A., Paszkowski J..
Stress-induced intrachromosomal recombination in plant somatic cells.
Proceedings of the National Academy of Sciences of the USA.
(1993);
90
422-426
-
110
Lee B., Amon A..
Meiosis: How to create a specialized cell cycle.
Current Opinion in Cell Biology.
(2001);
13
770-777
-
111
Lee J., Iwai T., Yokota T., Yamashita M..
Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis.
Journal of Cell Science.
(2003);
116
2781-2790
-
112
LeMaire-Adkins R., Radke K., Hunt P. A..
Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females.
Journal of Cell Biology.
(1997);
139
1611-1619
-
113
Loidl J..
The initiation of meiotic chromosome pairing: The cytological view.
Genome.
(1990);
33
759-778
-
114
Loidl J., Klein F., Scherthan H..
Homologous pairing is reduced but not abolished in asynaptic mutants of yeast.
Journal of Cell Biology.
(1994);
125
1191-1200
-
115
Lydall D., Nikolsky Y., Bishop D. K., Weinert T..
A meiotic recombination checkpoint controlled by mitotic checkpoint genes.
Nature.
(1996);
383
840-843
-
116
Lynn A., Koehler K. E., Judis L., Chan E. R., Cherry J. P., Schwartz S., Seftel A., Hunt P. A., Hassold T. J..
Covariation of synaptonemal complex length and mammalian meiotic exchange rates.
Science.
(2002);
296
2222-2225
-
117
Maestra B., de Jong J. H., Shepherd K., Naranjo T..
Chromosome arrangement and behaviour of the two rye homologous telosomes at the onset of meiosis in disomic wheat 5RL addition lines with and without the Ph1 locus.
Chromosome Research.
(2002);
10
655-667
-
118
Magnard J.-L., Yang M., Chen Y.-C. S., Leary M., McCormick S..
The Arabidopsis gene TARDY ASYNCHRONOUS MEIOSIS is required for the normal pace and synchrony of cell division during male meiosis.
Plant Physiology.
(2001);
127
11731-11735
-
119
Mahadevaiah S. K., Turner J. M., Baudat F., Rogakou E. P., de Boer P., Blanco-Rodriguez J., Jasin M., Keeney S., Bonner W. M., Burgoyne P. S..
Recombinational DNA double-strand breaks in mice precede synapsis.
Nature Genetics.
(2001);
27
271-276
-
120 Margulis L., Sagan D.. Origins of Sex. New Haven; Yale University Press (1986)
-
121
Martinez-Perez E., Shaw P., Moore G..
Polyploidy induces centromere association.
Journal of Cell Biology.
(2000);
148
233-238
-
122
Martinez-Perez E., Shaw P., Moore G..
The Ph1 locus is needed to ensure specific somatic and meiotic centromere association.
Nature.
(2001);
411
204-207
-
123
Masson J. E., Paszkowski J..
Arabidopsis thaliana mutants altered in homologous recombination.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
11731-11735
-
124
Masterton J..
Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms.
Science.
(1994);
264
421-423
-
125 Maynard Smith J., Szathmary E.. The Major Transitions in Evolution. New York; Freeman (1995)
-
126
McKim K. S., Green-Marroquin B. L., Sekelsky J. J., Chin G., Steinberg C., Khodosh R., Hawley R. S..
Meiotic synapsis in the absence of recombination.
Science.
(1998);
279
876-878
-
127
McKim K. S., Hawley R. S..
Chromosomal control of meiotic cell division.
Science.
(1995);
270
1595-1601
-
128
Mercier R., Grelon M., Vezon D., Horlow C., Pelletier G..
How to characterize meiotic functions in plants?.
Biochimie.
(2001 a);
83
1023-1028
-
129
Mercier R., Vezon D., Bullier E., Motamayor J. C., Sellier A., Lefèvre F., Pelletier G., Horlow C..
Switch1 (Swi1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis.
Genes and Development.
(2001 b);
15
1859-1871
-
130
Mercier R., Armstrong S. J., Horlow C., Jackson N. P., Makaroff C. A., Vezon D., Pelletier G., Jones G. H., Franklin F. C. H..
The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis.
.
Development.
(2003);
130
3309-3318
-
131
Miyazaki W. Y., Orr-Weaver T. L..
Sister-chromatid cohesion in mitosis and meiosis.
Annual Review of Genetics.
(1994);
28
167-187
-
132
Moens P. B., Kolas N. K., Tarsounas M., Marcon E., Cohen P. E., Spyropoulos B..
The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination.
Journal of Cell Science.
(2002);
115
1611-1622
-
133 Moore D. P., Orr-Weaver T. L.. Chromosome segregation during meiosis: building an unambivalent bivalent. Handel, M. A., ed. Meiosis and Gametogenesis. London; Academic Press (1998): 263-299
-
134
Moore D. P., Page A. W., Tang T. T., Kerrebrock A. W., Orr-Weaver T. L..
The cohesion protein MEI-S332 localises to condensed meiotic and mitotic centromeres until sister chromatids separate.
Journal of Cell Biology.
(1998);
140
1003-1012
-
135
Moreau P. J. F., Zicker D., Leblon G..
One class of mutants with disturbed centromere cleavage and chromosome pairing in Sordaria macrospora.
.
Molecular and General Genetics.
(1985);
198
189-197
-
136
Motamayor J. C., Vezon D., Bajon C., Sauvanet A., Grandjean O., Marchand M., Berchtold N., Pelletier G., Horlow C..
Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch.
Sexual Plant Reproduction.
(2000);
12
209-218
-
137
Muller H. J..
The mechanism of crossing over.
American Naturalist.
(1916);
50
193-221
284-305
350-366
421-434
-
138
Nag D. K., Petes T. D..
Physical detection of heteroduplexes during meiotic recombination in the yeast Saccharomyces cerevisiae.
.
Molecular and Cellular Biology.
(1993);
13
2324-2331
-
139
Nag D. K., Scherthan H., Rockmill B., Bhargava J., Roeder G. S..
Heteroduplex formation and homolog pairing in yeast meiotic mutants.
Genetics.
(1995);
141
75-86
-
140
Nasmyth K..
Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis.
Annual Review of Genetics.
(2001);
35
673-745
-
141
Nicklas R. B., Ward S. C., Gorbsky G. J..
Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint.
Journal of Cell Biology.
(1995);
130
929-939
-
142
Oakberg E. F..
Duration of the spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium.
American Journal of Anatomy.
(1956);
99
998-1002
-
143
Orr-Weaver T. L..
Meiosis in Drosophila: seeing is believing.
Proceedings of the National Academy of Sciences of the USA.
(1995);
92
10443-10449
-
144
Padmore R., Cao L., Kleckner N..
Temporal comparison of recombination and synaptonemal complex formation during meiosis in Saccharomyces cerevisiae.
.
Cell.
(1991);
66
1239-1256
-
145
Page S. L., Hawley R. S..
Chromosome choreography: The meiotic ballet.
Science.
(2003);
301
785-789
-
146
Paques F., Haber J. E..
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiology and Molecular Biology Reviews.
(1999);
63
349-404
-
147
Pawlowski W. P., Golubovskaya I. N., Cande W. Z..
Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition.
Plant Cell.
(2003);
15
1807-1816
-
148
Pawlowski W. P., Golubovskaya I. N., Timofejeva L., Meeley R. B., Sheridan W. F., Cande W. Z..
Coordination of meiotic recombination, pairing, and synapsis by PHS1.
Science.
(2004);
303
89-92
-
149
Pecina A., Smith K. N., Mézard C., Murakami H., Ohta K., Nicolas A..
Targeted stimulation of meiotic recombination.
Cell.
(2002);
111
173-184
-
150
Peters J. L., Cnudde F., Gerats T..
Forward genetics and map-based cloning approaches.
Trends in Plant Science.
(2003);
8
484-491
-
151
Petes T. D..
Meiotic recombination hot spots and cold spots.
Nature Reviews in Genetics.
(2001);
2
360-369
-
152
Petronczki M., Siomos M. F., Nasmyth K..
Un ménage à quatre: The molecular biology of chromosome segregation in meiosis.
Cell.
(2003);
112
423-440
-
153
Porceddu A., Reale L., Lanfaloni L., Moretti C., Sorbolini S., Tedeschini E., Ferranti F., Pezzotti M..
Cloning and expression analysis of a Petunia hybrida flower specific mitotic-like cyclin.
FEBS Letters.
(1999);
462
211-215
-
154
Porter S. E., White M. A., Petes T. D..
Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break.
Genetics.
(1993);
134
5-19
-
155
Preuss S. B., Britt A. B..
A DNA-damage-induced cell cycle checkpoint in Arabidopsis.
.
Genetics.
(2003);
164
323-334
-
156
Preuss D., Rhee S. Y., Davis R. W..
Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes.
Science.
(1994);
264
1458-1460
-
157
Prieto I., Suja J. A., Pezzi N., Kremer L., Martinez-A. C., Rufas J. S., Barbero J. L..
Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I.
Nature Cell Biology.
(2001);
3
761-766
-
158
Puchta H., Hohn B..
From centimorgans to basepairs: homologous recombination in plants.
Trends in Plant Science.
(1996);
1
340-348
-
159
Puchta H., Swoboda P., Hohn B..
Induction of intrachromosomal recombination in whole plants.
Plant Journal.
(1995);
7
203-210
-
160
Quevedo C., Del Cerro A. L., Santos J. L., Jones G. H..
Correlated variation of chiasma frequency and synaptonemal complex length in Locusta migratoria.
.
Heredity.
(1997);
78
515-519
-
161
Rabitsch K. P., Petronczki M., Javerzat J.-P., Genier S., Chwalla B., Schleiffer A., Tanaka T. U., Nasmyth K..
Kinetochore recruitment of two nucleolar proteins is required for homolog separation in meiosis I.
Developmental Cell.
(2003);
4
535-548
-
162
Rajewsky M. F., Engelbergs J., Thomale J., Schweer T..
Relevance of DNA repair to carcinogenesis and cancer therapy.
Recent Results in Cancer Research.
(1998);
154
127-146
-
163
Reddy T. V., Kaur J., Agashe B., Sundaresan V., Siddiqi I..
The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein.
Development.
(2003);
130
5975-5987
-
164
Reinke V., Smith H. E., Nance J., Wang J., van Doren C., Begley R., Jones S. J. M., Davis E. B., Scherer S., Ward S., Kim S. K..
A global profile of germline gene expression in C. elegans.
.
Molecular Cell.
(2000);
6
605-616
-
165
Revenkova E., Eijpe M., Heyting C., Gross B., Jessberger R..
Novel meiosis-specific isoform of mammalian SMC1.
Molecular and Cellular Biology.
(2001);
21
6984-6998
-
166
Rice W. R., Chippindale A. K..
Sexual recombination and the power of natural selection.
Science.
(2001);
294
555-559
-
167
Riggs C. D..
Meiotin-1: the meiosis readiness factor?.
BioEssays.
(1997);
19
925-931
-
168
Rockmill B., Fung J. C., Branda S. S., Roeder G. S..
The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over.
Current Biology.
(2003);
13
1954-1962
-
169
Roeder G. S..
Sex and the single cell: Meiosis in yeast.
Proceedings of the National Academy of Sciences of the USA.
(1995);
92
10450-10456
-
170
Roeder G. S..
Meiotic chromosomes: it takes two to tango.
Genes and Development.
(1997);
11
2600-2621
-
171
Roeder G. S., Bailis J. M..
The pachytene checkpoint.
Trends in Genetics.
(2000);
16
395-398
-
172
Ross K. J., Fransz F., Jones G. H..
A light microscopic atlas of meiosis in Arabidopsis thaliana.
.
Chromosome Research.
(1996);
4
507-516
-
173
Ross K. J., Fransz P., Armstrong S. J., Vizir I., Mulligan B., Franklin F. C. H., Jones G. H..
Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transformed lines.
Chromosome Research.
(1997);
5
551-559
-
174
Sanchez-Moran E., Armstrong S. J., Santos J. L., Franklin F. C. H., Jones G. H..
Variation in chiasma frequency among eight accessions of Arabidopsis thaliana.
.
Genetics.
(2002);
162
1415-1422
-
175
Sanders P. M., Bui A. Q., Weterings K., McIntire K. N., Hsu Y.-C., Lee P. Y., Truong M. T., Beals T. P., Goldberg R. B..
Anther developmental defects in Arabidopsis thaliana male-sterile mutants.
Sexual Plant Reproduction.
(1999);
11
297-322
-
176
SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z., Bennetzen J. L..
Nested retrotransposons in the intergenic regions of the maize genome.
Science.
(1996);
274
765-768
-
177 Schedl T.. Developmental genetics of the germline. Riddle, D. L., Blumenthal, T., Meyer, B. J., and Priess, J. R., eds.
C. elegans II. Cold Spring Harbor, New York; Cold Spring Harbor Laboratory Press (1997): 241-269
-
178
Scherthan H., Weich S., Schwegler H., Heyting C., Harle M., Cremer T..
Centromere and telomere movements during early meiotic prophase of mouse and men are associated with the onset of chromosome pairing.
Journal of Cell Biology.
(1996);
134
1109-1125
-
179
Scherthan H..
A bouquet makes ends meet.
Nature Review of Molecular and Cellular Biology.
(2001);
2
621-627
-
180
Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dear C..
Physical map and organization of Arabidopsis thaliana chromosome 4.
Science.
(1995);
270
480-483
-
181
Schommer C., Beven A., Lawrenson T., Shaw P., Sablowski R..
AHP2 is required for bivalent formation and for segregation of homologous chromosomes in Arabidopsis meiosis.
Plant Journal.
(2003);
36
1-11
-
182
Schwacha A., Kleckner N..
Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis.
Cell.
(1994);
76
51-63
-
183
Schwacha A., Kleckner N..
Identification of double Holliday junctions as intermediates in meiotic recombination.
Cell.
(1995);
83
783-791
-
184
Sears E. R..
Misdivision of univalents in common wheat.
Chromosoma.
(1952);
4
535-550
-
185
Shaw P., Moore G..
Meiosis: vive la difference!.
Current Opinion in Plant Biology.
(1998);
458-462
-
186
Sherman J. D., Stack S. M., Anderson L. K..
Two-dimensional spreads of synaptonemal complexes from Solanaceous plants. IV. Synaptic irregularities.
Genome.
(1989);
32
743-753
-
187
Siddiqi I., Ganesh G., Grossniklaus U., Subbiah V..
The DYAD gene is required for progression through female meiosis in Arabidopsis.
.
Development.
(2000);
127
197-207
-
188
Siller S..
Sexual selection and maintenance of sex.
Nature.
(2001);
411
689-692
-
189
Simchen G., Hugerat Y..
What determines whether chromosomes segregate reductionally or equationally in meiosis?.
BioEssays.
(1993);
15
1-8
-
190 Singh R. J.. Plant Cytogenetics. Boca Raton, FL; CRC Press (1993): 391
-
191
Skibbens R. V., Corson L. B., Koshland D., Hieter P..
Ctf7 p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery.
Genes and Development.
(1999);
13
307-319
-
192
Smyth D. R., Bowman J. L., Meyerowitz E. M..
Early flower development in Arabidopsis.
.
Plant Cell.
(1990);
2
755-767
-
193
Spielman M., Preuss D., Li F.-L., Browne W. E., Scott R. J., Dickinson H. G..
TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana.
.
Development.
(1997);
124
2625-2657
-
194
Straight A. F..
Cell cycle: checkpoint proteins and kinetochores.
Current Biology.
(1997);
7
613-616
-
196
Stuart D., Wittenberg C..
CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint.
Genes and Development.
(1998);
12
2698-2710
-
197
Suja J. A., Antonio C., Debec A., Rufas J. S..
Phosphorylated proteins are involved in sister chromatid arm cohesion during meiosis I.
Journal of Cell Science.
(1999);
112
2957-2969
-
198
Sun H., Treco D., Schultes N. P., Szostak J. W..
Double-strand breaks at an initiation site for meiotic gene conversion.
Nature.
(1989);
338
87-90
-
199
Sym M., Engebrecht J., Roeder G. S..
ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis.
Cell.
(1993);
72
365-378
-
200
Sym M., Roeder G. S..
Crossover interference is abolished in the absence of a synaptonemal complex protein.
Cell.
(1994);
79
283-292
-
201
Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W..
The double-strand-break repair model for recombination.
Cell.
(1983);
33
25-35
-
202
Tanksley S. D., Ganal M. W., Prince J. P., de Vincente M. C.. et al. .
High density molecular linkage maps of the tomato and potato genomes.
Genetics.
(1992);
132
1141-1160
-
203
Toth A., Ciosk R., Uhlmann F., Galova M., Schleiffer A., Nasmyth K..
Yeast cohesin complex requires a conserved protein, Eco1 p(Ctf7), to establish cohesion between sister chromatids during DNA replication.
Genes and Development.
(1999);
13
320-333
-
204
Toth A., Rabitsch K. P., Galova M., Schleiffer A., Buonomo S. B. C., Nasmyth K..
Functional genomics identifies monopolin: A kinetochore protein required for segregation of homologs during meiosis I.
Cell.
(2000);
103
1155-1168
-
205
Tovar J., Lichtenstein C..
Somatic and meiotic chromosomal recombination between inverted duplications in transgenic tobacco plants.
Plant Cell.
(1992);
4
319-332
-
206
Trelles-Sticken E., Dresser M. E., Scherthan H..
Meiotic telomere protein Ndj1 p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing.
Journal of Cell Biology.
(2000);
151
95-106
-
207
Tung K.-S., Hong E.-J. E., Roeder G. S..
The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80.
Proceedings of the National Academy of Sciences of the USA.
(2000);
22
12187-12192
-
208
Van Beneden E..
Recherches sur la maturation de l'oeuf, la fecondation et la division cellulaire.
Archives of Biology.
(1883);
4
265-640
-
209
van Heemst D., Heyting C..
Sister chromatid cohesion and recombination in meiosis.
Chromosoma.
(2000);
109
10-26
-
210
van Veen J. E., Hawley R. S..
Meiosis: when even two is a crowd.
Current Biology.
(2003);
13
831-833
-
211
Vergowen R. P. F. A., Jacobs S. G. M., Huiskamp R., Davids J. A. G., de Rooij D. G..
Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice.
Journal of Reproduction and Fertility.
(1991);
93
233-243
-
212
Vig B. K..
Somatic crossing over in Glycine max (L.) Merril: effects of some inhibitors of DNA synthesis on the induction of somatic crossing over and point mutations.
Genetics.
(1973);
73
583-596
-
213
Villeneuve A. M., Hillers K. J..
Whence Meiosis?.
Cell.
(2001);
106
647-650
-
214
von Wettstein D., Rasmussen S. W., Holm P. B..
The synaptonemal complex in genetic segregation.
Annual Review of Genetics.
(1984);
18
331-413
-
215
Vousden K. H..
p53: death star.
Cell.
(2000);
103
691-694
-
216
Walker M. Y., Hawley R. S..
Hanging on to your homolog: the roles of pairing, synapsis and recombination in the maintenance of homolog adhesion.
Chromosoma,.
(2000);
109
3-9
-
217
Watanabe Y., Nurse P..
Cohesin Rec8 is required for reductional chromosome segregation at meiosis.
Nature.
(1999);
400
461-464
-
218
Watanabe Y., Yokobayashi S., Yamamoto M., Nurse P..
Pre-meiotic S phase is linked to reductional chromosome segregation and recombination.
Nature.
(2001);
409
359-363
-
219
Weiner B. M., Kleckner N..
Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast.
Cell.
(1994);
77
977-991
-
220
Weismann A..
On the signification of the polar globules.
Nature.
(1887);
36
607-609
-
221
Wu T.-C., Lichten M..
Meiosis-induced double-strand break sites determined by yeast chromatin structure.
Science.
(1994);
263
515-518
-
222
Xu X., Hsia A.-P., Zhang L., Nikolau B. J., Schnable P. S..
Meiotic recombination break points resolve at high rates at the 5′ end of a maize coding sequence.
Plant Cell.
(1995);
7
2151-2161
-
223
Yang M., Hu Y., Lodhi M., McCombie W. R., Ma H..
The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation.
Proceedings of the National Academy of Sciences of the USA.
(1999);
96
11416-11421
-
224
Yang M., Ma H..
Male meiotic spindle lengths in normal and mutant Arabidopsis cells.
Plant Physiology.
(2001);
126
622-630
-
225
Yang M., McCormick S..
The Arabidopsis MEI1 gene likely encodes a protein with BRCT domains.
Sexual Plant Reproduction.
(2002);
14
355-357
-
226
Yang W.-C., Sundaresan V..
Genetics of gametophyte biogenesis in Arabidopsis.
.
Current Opinion in Plant Biology.
(2000);
3
53-57
-
227
Yang C.-Y., Spielman M., Coles J. P., Li Y., Ghelani S., Bourdon V., Brown R. C., Lemmon B. E., Scott R. J., Dickinson H. G..
TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis.
.
Plant Journal.
(2003 a);
34
229-240
-
228
Yang X., Makaroff C. A., Ma H..
The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis.
Plant Cell.
(2003 b);
15
1281-1295
-
229
Zalevsky J., MacQueen A. J., Duffy J. B., Kemphues K. J., Villeneuve A. M..
Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast.
Genetics.
(1999);
153
1271-1291
-
230
Zetka M., Rose A..
Mutant rec-1 eliminates the meiotic pattern of crossing over in Caenorhabditis elegans.
.
Genetics.
(1995);
141
1339-1349
-
231
Zickler D., Kleckner N..
The leptotene-zygotene transition of meiosis.
Annual Review of Genetics.
(1998);
32
619-697
-
232
Zickler D., Kleckner N..
Meiotic chromosomes: integrating structure and function.
Annual Review of Genetics.
(1999);
33
603-754
T. Gerats
Department of Experimental Botany
University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands
eMail: t.gerats@science.ru.nl
Editor: J. Raven