Zusammenfassung
Die Rezeptortyrosinkinase FLT3 spielt eine entscheidende Rolle in der Expansion hämatopoetischer Vorläuferzellen und wird auf leukämischen Blasten von > 90 % aller Patienten mit Akuter Myeloischer Leukämie (AML) exprimiert. Aktivierende FLT3-Mutationen stellen einen krankheitsspezifischen molekularen Marker dar und sind mit einer Inzidenz von 25 - 30 % die häufigsten genetischen Alterationen in der AML. Die Mutationen sind entweder Längenmutationen in der juxtamembranösen Region (FLT3-LM) oder Punktmutationen bzw. kleine Deletionen und/oder Insertionen in der Proteintyrosinkinase-Domäne (FLT3-TKD). Detaillierte Analysen in morphologisch und zytogenetisch definierten AML-Subgruppen konnten zeigen, dass FLT3-LM stark mit einem normalem Karyotyp oder t(15;17)/PML-RARA positiven AML assoziiert sind. Die FLT3-TKD Mutationen sind dagegen fast gleichmäßig über alle AML-Subgruppen verteilt. Der Nachweis einer FLT3-LM ist mit einer schlechteren Prognose assoziiert, wogegen für die FLT3-TKD-Mutationen keine prognostische Relevanz gezeigt werden konnte. Eine FLT3-LM kann während und nach der Therapie als Marker für eine minimale Resterkrankung (MRD) genutzt werden. Der Verlust des Wildtyp FLT3-Allels stellt einen weiteren negativ-prognostischen Faktor dar und findet sich gehäuft bei Patienten mit fortgeschrittener Erkrankung.
Aktivierende FLT3-Mutationen haben in In-vitro- und In-vivo-Modellsystemen ein transformierendes Potential und aktivieren spezifische mitogene Signalketten. Obwohl eine alleinige FLT3-LM im Mausmodell nicht zur Induktion eines AML-Phänotyps ausreichend ist, besitzt der aktivierte FLT3-Rezeptor in AML-Blasten eine essentielle pro-proliferative und anti-apoptotische Aktivität. Die Identifikation und Charakterisierung von selektiven FLT3-PTK-Inhibitoren mit In-vivo-Aktivität ermöglicht erstmals eine pathogenetisch orientierte molekulare Therapiestrategie bei Patienten mit AML, die zur Zeit in Phase I/II Studien evaluiert wird.
Literatur
1
Abu-Duhier F M, Goodeve A C, Wilson G A, Care R S, Peake I R, Reilly J T.
Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia.
Br J Haematol.
2001;
113
983-988
2
Bagrintseva K, Schwab R, Kohl T M. et al .
Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells.
Blood.
2004;
103
2266-2275
, Epub 2003 Nov 2266.
3
Baldwin B R, Tse K F, Small D.
Transgenic mice expressing a constitutively activated FLT3 receptor display a myeloproliferative disease phenotype.
Blood.
2001;
98
801a
4
Buchner T, Hiddemann W, Wormann B. et al .
Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine: a randomized trial by the German AML Cooperative Group.
Blood.
1999;
93
4116-4124
5
Buchner T, Hiddemann W, Wormann B. et al .
Acute myeloid leukemia in adults: is postconsolidation maintenance therapy necessary?.
Int J Hematol.
2000;
72
285-289
6
Carow C E, Levenstein M, Kaufmann S H. et al .
Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias.
Blood.
1996;
87
1089-1096
7
Frohling S, Schlenk R F, Breitruck J. et al .
Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm.
Blood.
2002;
100
4372-4380
8
Gilliland D G.
Molecular genetics of human leukemias: new insights into therapy.
Semin Hematol.
2002;
39
6-11
9
Gilliland D G.
Murky waters for MRD detection in AML: flighty FLT3/ITDs.
Blood.
2002;
100
2277b
10
Hawley T S, Fong A Z, Griesser H, Lyman S D, Hawley R G.
Leukemic predisposition of mice transplanted with gene-modified hematopoietic precursors expressing flt3 ligand.
Blood.
1998;
92
2003-2011
11
Hayakawa F, Towatari M, Kiyoi H. et al .
Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines.
Oncogene.
2000;
19
624-631
12
Horvath C M.
STAT proteins and transcriptional responses to extracellular signals.
Trends Biochem Sci.
2000;
25
496-502
13
Hubbard S R, Till J H.
Protein tyrosine kinase structure and function.
Annu Rev Biochem.
2000;
69
373-398
14
Ihle J N.
Cytokine receptor signalling.
Nature.
1995;
377
591-594
15
Kelly L, Clark J, Gilliland D G.
Comprehensive genotypic analysis of leukemia: clinical and therapeutic implications.
Curr Opin Oncol.
2002;
14
10-18
16
Kelly L M, Liu Q, Kutok J L, Williams I R, Boulton C L, Gilliland D G.
FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model.
Blood.
2002;
99
310-318
17
Kelly L M, Yu J C, Boulton C L. et al .
CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML).
Cancer Cell.
2002;
1
421-432
18
Kiyoi H, Naoe T, Nakano Y. et al .
Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia.
Blood.
1999;
93
3074-3080
19
Kiyoi H, Naoe T, Yokota S. et al .
Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho).
Leukemia.
1997;
11
1447-1452
20
Kiyoi H, Towatari M, Yokota S. et al .
Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product.
Leukemia.
1998;
12
1333-1337
21
Kottaridis P D, Gale R E, Frew M E. et al .
The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials.
Blood.
2001;
98
1752-1759
22
Kottaridis P D, Gale R E, Linch D C.
Flt3 mutations and leukaemia.
Br J Haematol.
2003;
122
523-538
23
Levis M, Allebach J, Tse K F. et al .
A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo.
Blood.
2002;
99
3885-3891
24
Lisovsky M, Estrov Z, Zhang X. et al .
Flt3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of Bcl-2 and Bax.
Blood.
1996;
88
3987-3997
25
Matthews W, Jordan C T, Gavin M, Jenkins N A, Copeland N G, Lemischka I R.
A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit.
Proc Natl Acad Sci U S A.
1991;
88
9026-9030
26
Meshinchi S, Woods W G, Stirewalt D L. et al .
Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia.
Blood.
2001;
97
89-94
27
Mizuki M, Fenski R, Halfter H. et al .
Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways.
Blood.
2000;
96
3907-3914
28
Nakao M, Yokota S, Iwai T. et al .
Internal tandem duplication of the flt3 gene found in acute myeloid leukemia.
Leukemia.
1996;
10
1911-1918
29
Reilly J T.
Receptor tyrosine kinases in normal and malignant haematopoiesis.
Blood Rev.
2003;
17
241-248
30
Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D.
Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family.
Oncogene.
1991;
6
1641-1650
31
Schlessinger J.
Cell signaling by receptor tyrosine kinases.
Cell.
2000;
103
211-225
32
Schnittger S, Boell I, Schoch C. et al .
FLT3D835/I836 Point Mutations in Acute Myeloid Leukemia: Correlation to Cytogenetics, Cytomorphology, and Prognosis in 1229 Patients.
Blood.
2002;
100
329a
33
Schnittger S, Schoch C, Dugas M. et al .
Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia (AML): Correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study, and usefulness as a marker for detection of minimal residual disease.
Blood.
2002;
100
59-66
34
Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W.
New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts.
Blood.
2003;
102
2746-2755
35
Spiekermann K, Bagrintseva K, Schoch C, Haferlach T, Hiddemann W, Schnittger S.
A new and recurrent activating length mutation in exon 20 of the FLT3 gene in acute myeloid leukemia.
Blood.
2002;
100
3423-3425
36
Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, Hiddemann W.
Overexpression and Constitutive Activation of FLT3 Induces STAT5 Activation in Primary Acute Myeloid Leukemia Blast Cells.
Clin Cancer Res.
2003;
9
2140-2150
37
Spiekermann K, Dirschinger R J, Schwab R. et al .
The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3.
Blood.
2003;
101
1494-1504
38
Stirewalt D L, Radich J P.
The role of FLT3 in haematopoietic malignancies.
Nat Rev Cancer.
2003;
3
650-665
39
Stone R M, DeAngelo D J, Klimek V. et al .
Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412.
Blood.
2005;
105
54-60
40
Thiede C, Schnittger S, Kern W. et al .
Point Mutations of the FLT3-Receptor Tyrosine Kinase in Patients with Acute Myeloid Leukemia- Results of an Intergroup Analysis of the AML CG Study and the AML96 Study of the SHG.
Blood.
2003;
102
606a
41
Thiede C, Steudel C, Mohr B. et al .
Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis.
Blood.
2002;
99
4326-4335
42
Weisberg E, Boulton C, Kelly L M. et al .
Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412.
Cancer Cell.
2002;
1
433-443
43
Whitman S P, Archer K J, Feng L. et al .
Absence of the Wild-Type Allele Predicts Poor Prognosis in Adult de Novo Acute Myeloid Leukemia with Normal Cytogenetics and the Internal Tandem Duplication of FLT3: A Cancer and Leukemia Group B Study.
Cancer Res.
2001;
61
7233-7239
44
Yamamoto Y, Kiyoi H, Nakano Y. et al .
Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies.
Blood.
2001;
97
2434-2439
45
Zheng R, Levis M, Piloto O. et al .
FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells.
Blood.
2004;
103
267-274
K. Spiekermann S. Schnittger
Medizinische Klinik III
Marchioninistraße 15
81377 München
Telefon: ++49/89/7099417/423 oder ++49/89/7095-4970
eMail: k.spiekermann@gmx.de
eMail: Susanne.Schnittger@med3.med.uni-muenchen.de