Subscribe to RSS
DOI: 10.1055/s-2005-868483
Stereoselective Synthesis of β-Branched Baylis-Hillman Adducts via Organozinc Species
Publication History
Publication Date:
21 April 2005 (online)
Abstract
An efficient one-pot, three-component coupling reaction for the synthesis of unusual β-branched Baylis-Hillman adducts has been developed. Organozinc species CF3CO2ZnEt added to α,β-acetylenic ketones in a 1,4-fashion to yield allenolates, which reacted with aldehydes providing highly functionalized trisubstituted olefins in good to excellent yields with stereoselectivity.
Key words
Baylis-Hillman adducts - organozinc species - acetylenic ketones - aldehydes
-
1a
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653 -
1b
Basavaiah D.Pandiaraju S.Padmaja K. Synlett 1996, 393 -
1c
Basavaiah D.Darma RP.Hyma RS. Tetrahedron 1996, 52: 8001 -
1d
Li G.Wei H.-X.Gao JJ.Caputo TD. Tetrahedron Lett. 2000, 41: 1 -
1e
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
1f
Yeo JE.Yang XL.Kim HJ.Koo S. Chem. Commun. 2004, 236 -
2a
Brzezinski LJ.Rafel S.Leahy JM. J. Am. Chem. Soc. 1997, 119: 4317 -
2b
Iwabuchi Y.Nakatani M.Yokoyama N.Hatakeyama S. J. Am. Chem. Soc. 1999, 121: 10219 -
2c
Marko IE.Giles PG.Hindley NJ. Tetrahedron 1997, 53: 1015 -
2d
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
3a
Marson CM.Harper S.Oare CA.Walsgrove T. J. Org. Chem. 1998, 63: 3798 -
3b
Perlmutter P.Tabone M. J. Org. Chem. 1995, 60: 6515 -
3c
Fenical W. Chem. Rev. 1993, 93: 1673 -
3d
Garson MJ. Chem. Rev. 1993, 93: 1699 -
3e
Hoffman HMR.Rabe J. J. Org. Chem. 1985, 50: 3849 -
4a
Ciganek E. Org. React. 1997, 51: 201 -
4b
Roth F.Gygax P.Frater G. Tetrahedron Lett. 1992, 48: 6371 -
4c
Drewes SE.Njamela OL.Emslie ND.Ramesar N.Field JS. Synth. Commun. 1993, 23: 2807 -
5a
Zhu N.Hall DH. J. Org. Chem. 2003, 68: 6066 -
5b
Krause N.Gerold A. Angew. Chem., Int. Ed. Engl. 1997, 36: 186 -
5c
Marino JP.Linderman RJ. J. Org. Chem. 1983, 48: 4621 -
5d
Corey EJ.Katzenellenbogen JA. J. Am. Chem. Soc. 1969, 91: 1851 -
6a
Tsuda T.Yoshida T.Saegusa T. J. Org. Chem. 1988, 53: 1037 -
6b
Tsuda T.Yoshida T.Kawamoto T.Saegusa T. J. Org. Chem. 1987, 52: 1624 -
7a
Ramachandran PV.Reddy MVR.Rudd MT.de Alaniz JR. Tetrahedron Lett. 1998, 39: 8791 -
7b
Ramachandran PV.Ram Reddy MV.Rudd MT. Tetrahedron Lett. 1999, 40: 627 -
7c
Ramachandran PV.Ram Reddy MV.Rudd MT. Chem. Commun. 1999, 1979 -
7d
Li G.Wei HX.Willis S. Tetrahedron Lett. 1998, 39: 4607 -
7e
Chen D.Timmons C.Liu JY.Hendley A.Li G. Eur. J. Org. Chem. 2004, 3330 -
8a
Kabalka GW.Yu S.Li N.-S.Lipprandt U. Tetrahedron Lett. 1999, 40: 37 -
8b
Yu S.Li NS.Kabalka GW. J. Org. Chem. 1999, 64: 5822 - For conjugate addition of zinc-copper reagents to acetylenic esters, see:
-
9a
Knochel P.Singer RD. Chem. Rev. 1993, 93: 2117 -
9b
Knoess HP.Furlong MT.Rozema MJ.Knochel P. J. Org. Chem. 1991, 56: 5974 -
9c
Jubert C.Knochel P. J. Org. Chem. 1992, 57: 5425 - For copper-catalyzed conjugate addition of zinc reagents to acetylenic esters, see:
-
10a
Crimmins MT.Nantermet P. J. Org. Chem. 1990, 55: 4235 -
10b
Crimmins MT.Nantermet PG.Trotter BW.Vallin IM.Watson PS.McKerlie LA.Reinhold TL.Cheung AW.-H.Stetson KA.Dedopoulou D.Gray JL. J. Org. Chem. 1993, 58: 1038 - For conjugate addition of organozinc reagents to acetylenic ketones, see:
-
11a
Brunner M.Maas G. Synthesis 1995, 957 -
11b
Nakamura E.Kuwajima I. J. Am. Chem. Soc. 1984, 106: 3368 -
12a
Xue S.Li YL.Han KZ.Yin W.Wang M.Guo QX. Org. Lett. 2002, 4: 905 -
12b
Xue S.Han KZ.He L.Guo QX. Synlett 2003, 870 -
15a
Taniguchi M.Hino T.Kishi Y. Tetrahedron Lett. 1986, 27: 4767 -
15b
Taniguchi M.Kobayashi S.Nakagawa M.Hino T.Kishi Y. Tetrahedron Lett. 1986, 27: 4763 - 16
Kinoshita S.Kinoshita H.Iwamura T.Watanabe S.Kataoka T. Chem.-Eur. J. 2003, 9: 1496
References
Typical Procedure for Reaction of α,β-Acetylenic Ketones with CF
3
CO
2
ZnEt and Aldehydes.
To a solution of Et2Zn (78.5 µL, 0.75 mmol) in 2 mL CH2Cl2 at 0 °C was added dropwise CF3COOH (58 µL, 0.75 mmol) slowly via syringe under N2. After stirring for 30 min at 0 °C, aldehyde (0.5 mmol) was added, and then acetylenic ketone (0.75 mmol) was added. The mixture was stirred for 5 h at r.t. until TLC indicated complete consumption of the starting aldehyde. The reaction was quenched by sat. aq NH4Cl and extracted with Et2O (3 × 10 mL). The combined organic extracts was washed with brine, dried over MgSO4 and concentrated under reduced pressure to an oil residue. The desired product was isolated by silica gel chromatography with petroleum ether-EtOAc (10:1 to 5:1). Data for compound 2a: 1H NMR (300 MHz, CDCl3): δ = 7.18 (d, J = 8.5 Hz, 2 H), 6.80 (d, J = 8.5 Hz, 2 H), 5.80 (t, J = 7.5 Hz, 1 H), 5.32 (d, J = 4.9 Hz, 1 H), 3.72 (s, 3 H), 2.75 (d, J = 4.9 Hz, 1 H), 2.22 (dq J = 7.5, 7.5 Hz, 2 H), 2.10 (s, 3 H), 0.99 (t, J = 7.5 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 204.63, 159.18, 142.98, 138.67, 133.96, 127.81, 113.92, 75.07, 55.31, 31.67, 22.87, 14.01 ppm. IR (neat):
ν = 3435, 2966, 2838, 1683, 1611, 1585, 1512, 1249, 1174, 1033, 837 cm-1. HRMS (CI): m/z calcd for C14H19O3 [MH+]: 235.1334; found: 235.1336.
Crystal data of 2f: C13H15NO4, crystal system, orthorhombic; space group, Pbca; unit cell dimensions, a = 11.403 (2) Å, α = 90°; b = 8.844 (1) Å, β = 90°; c = 25.584 (4) Å, γ = 90°; volume, Z = 2580.14 (52) Å3; D cald = 1.283 g/cm3; Z = 8; µ = 0.096 mm-1; F 000 = 1056; full-matrix least-squares refinement on F2; final R indices [I>2σ(I)], R1 = 0.0385, wR2 = 0.0831; R indices (all data), R1 = 0.0922, wR2 = 0.0927.