References
1
The Porphyrin Handbook
Vol 1-20:
Kadish KM.
Smith KM.
Guilard R.
Academic Press;
San Diego:
2000-2003.
2a
Binbaum ER.
Schaefer WP.
Labingev JA.
Bercaw JE.
Gray HB.
Inorg. Chem.
1995,
34:
1751
2b
Campestrini S.
Lora G.
Tonellato U.
Tetrahedron Lett.
2001,
42:
7045
2c
Woller EK.
DiMagno SG.
J. Org. Chem.
1997,
62:
1588
2d
DiMagno SG.
Wertsching AK.
Rossa GR.
J. Am. Chem. Soc.
1995,
117:
8279
2e
Takeuchi T.
Gray HB.
Godciardi WA.
J. Am. Chem. Soc.
1994,
116:
9730
2f
Moore KT.
Fletcher JT.
Therin MJ.
J. Am. Chem. Soc.
1999,
121:
5196
2g
Taniguchi M.
Ra D.
Mo G.
Balasubramanian T.
Lindsey JS.
J. Org. Chem.
2001,
66:
7342
2h
Pozzi G.
Montanari F.
Quici S.
Chem. Commun.
1997,
69
2i
Barkigia KM.
Battioni P.
Riou V.
Mansuy D.
Fajev J.
Chem. Commun.
2002,
956
3
DiMagno SG.
Dussacet PH.
Schulty JA.
J. Am. Chem. Soc.
1996,
118:
5312
4a
Zeng Z.
Liu C.
Jin LM.
Guo CC.
Chen QY.
Eur. J. Org. Chem.
2005,
306
4b
Jin LM.
Zeng Z.
Guo CC.
Chen QY.
J. Org. Chem.
2003,
68:
3912
4c
Wijesekera TP.
Can. J. Chem.
1996,
74:
1868
4d
Goll JG.
Moore KT.
Ghosh A.
Therien MJ.
J. Am. Chem. Soc.
1996,
118:
8344
4e
DiMagno SG.
Williams RA.
Therine MJ.
J. Org. Chem.
1994,
59:
6943
4f
Michihide H.
Katsuhiro A.
Yasuhiro A.
Hisanobu O.
Tetrahedron Lett.
1983,
24:
4343
4g
Ralph WK.
LeGoff E.
J. Org. Chem.
1982,
47:
5243
For recent and selective reports on the transition metal-catalyzed cross-coupling reactions for porphyrin synthesis, see:
5a
Gao GY.
Colvin AJ.
Chen Y.
Zhang XP.
J. Org. Chem.
2004,
69:
8886
5b
Gao GY.
Chen Y.
Zhang XP.
Org. Lett.
2004,
6:
1837
5c
Gao GY.
Colvin AJ.
Chen Y.
Zhang XP.
Org. Lett.
2003,
5:
3261
5d
Gao GY.
Chen Y.
Zhang XP.
J. Org. Chem.
2003,
68:
6215
5e
Chen Y.
Zhang XP.
J. Org. Chem.
2003,
68:
4432
5f
Takanami T.
Hayashi M.
Hino F.
Suda K.
Tetrahedron Lett.
2003,
44:
7353
5g
Khan MM.
Ali H.
Van Lier JE.
Tetrahedron Lett.
2001,
42:
1615
5h
Cheng LL.
Chang CJ.
Nocera DG.
J. Org. Chem.
2003,
68:
4075
5i
Vas B.
Alvarez R.
Nieto M.
Paniello AI.
de Lera AR.
Tetrahedron Lett.
2001,
42:
7409
5j
Deng Y.
Chang CK.
Nocera DG.
Angew. Chem. Int. Ed.
2000,
39:
1066
5k
Iovine PM.
Kellett MA.
Redmore NP.
Therien MJ.
J. Am. Chem. Soc.
2000,
122:
8717
5l
Shanmugathasan S.
Johnson CK.
Edwards C.
Matthews EK.
Dolphin D.
Boyle RW.
J. Porphyrins Phthalocyanines
2000,
4:
228
5m
Shi X.
Amin R.
Liebeskind LS.
J. Org. Chem.
2000,
65:
1650
5n
Sharman WM.
Van Lier JE.
J. Porphyrins Phthalocyanines
2000,
4:
441 ; and references cited therein
6a
Arnold DP.
Bott RC.
Eldridge H.
Elms FM.
Smith G.
Zojaji M.
Aust. J. Chem.
1997,
50:
495
6b
DiMagno SG.
Lin VSY.
Therien MJ.
J. Org. Chem.
1993,
58:
5983
7
Callot HJ.
Bull. Soc. Chim. Fr.
1974,
1492
8
Kumar DK.
Bhyrappa P.
Varghese B.
Tetrahedron Lett.
2003,
40:
4849
9
Bhyrappa P.
Krishnan V.
Inorg. Chem.
1991,
30:
239
10
McLoughlin VCR.
Thrower J.
Tetrahedron
1969,
25:
5921
11
General Procedure for the Preparation of MDPP(Rf)
2
(M3) (M = Ni or Cu).
Porphyrin (40 mg), Pd2(dba)3·CHCl3/AsPh3 (10 mol%/80 mol%) and Cu (20 equiv to porphyrin) were added to a 50 mL Schlenk flask. The flask was then evacuated and backfilled with argon (three cycles). DMSO (8 mL) and RfI (10 equiv to porphyrin) were charged with a syringe at r.t. The reaction mixture was stirred at 100 °C for 4-48 h, and then allowed to reach r.t. The reaction mixture was diluted with CH2Cl2 and filtered through Celite. The solvent was washed three times with H2O. The organic layer was dried over Na2SO4 and evaporated to dryness. The resulting solid was purified by flash chromatography to yield the desired products in good yields. All the products gave satisfactory spectra. For example, NMR, mass spectra, elemental analysis and UV/Vis spectroscopy data of Ni3a are as follows: 1H NMR (300 MHz, CDCl3): δ = 7.64-7.74 (m, 6 H, Ph-H), 7.91 (s, 4 H, Ph-H), 8.76-8.80 (m, 4 H, β-H), 9.24-9.28 (m, 4 H, β-H) ppm. 19F NMR (282 MHz, CDCl3): δ = -67.37 (t, J = 14.4 Hz, 4 F, CF2Cl), -83.13 (br, 4 F, Por-CF2), -113.37 (s, 4 F, CF
2CF2Cl), -119.19 (t, J = 11.3 Hz, 4 F, Por-CF2CF
2) ppm. MS (MALDI): m/z = 986.0 [M+]. UV/Vis (CH2Cl2): λmax = 411, 543, 585 nm. Anal. Calcd for C48H18N4F16Cl2Ni: C, 48.62; H, 1.84; N, 5.67. Found: C, 48.45; H, 2.04; N, 5.57.
12 The perfluoroalkylation of β-bromo-substituted porphyrins were carried out with the starting porphyrin (50 mg), Pd2(dba)3·CHCl3/AsPh3 (10 mol%/80 mol%), Cu (10 equiv per Br) and IC4F8Cl (5 equiv per Br) in 10 mL DMSO at 100 °C for 1-14 h. The procedure was essentially similar to that of perfluoroalkylation of meso-bromo-substituted porphyrins, see ref. 11; the products were characterized on the basis of NMR, mass spectrometry, elemental analysis and UV/Vis spectra. For example, spectroscopic data of Ni8 are as follows: 19F NMR (282 MHz, CDCl3): δ = -68.21 (t, J = 12.4 Hz, 4 F, CF2Cl), -98.23 (m, 4 F, Por-CF2), -117.44 (m, 4 F, CF
2CF2Cl), -119.57 (t, J = 13.5 Hz, 4 F, Por-CF2CF
2) ppm. MS (MALDI): m/z = 1138.1 [M+]. UV/Vis (CH2Cl2): λmax = 428, 547, 588 nm. Anal. Calcd for C52H26N4F16Cl2Ni·H2O: C, 53.92; H, 2.44; N, 4.84. Found: C, 54.13; H, 2.38; N, 4.77.
13 For the details of this reaction, see ref. 4a; spectroscopic data of Ni11 are as follows: 1H NMR (300 MHz, CDCl3): δ = 7.70-7.75 (m, 12 H, Ph-H), 8.01-8.09 (m, 8 H, Ph-H), 8.41 (s, 4 H, β-H) ppm. 19F NMR (282 MHz, CDCl3): δ = -131.45 (d, J = 18.6 Hz, 4 F, Por-CF), -156.61 (d, J = 20.0 Hz, 4 F, Por-CF=CF) ppm. MS (MALDI): m/z = 914.1 [M+]. UV/Vis (CH2Cl2): λmax = 452, 572, 614 nm. Anal. Calcd for C52H24N4F8Ni: C, 68.22; H, 2.64; N, 6.12. Found: C, 68.51; H, 2.71; N, 6.21.