Subscribe to RSS
DOI: 10.1055/s-2005-868494
Practical and Efficient Route to (S)-γ-Fluoroleucine
Publication History
Publication Date:
03 May 2005 (online)
Abstract
A practical and efficient route to (S)-γ-fluoroleucine was developed via compound 9. Introduction of the fluorine was achieved using N,N-diethylaminosulfur trifluoride (DAST) treatment on a tertiary alcohol 8.
Key words
(S)-γ-fluoroleucine - methylmagnesium bromide - N,N-diethylaminosulfur trifluoride - oxazolidinone - continuous liquid-liquid extraction
- For reviews, see:
-
1a
Kollonitsch J.Patchett AA.Marburg S.Maycock AL.Perkins LM.Doldouras GA.Duggan DE.Aster SD. Nature 1978, 274: 906 -
1b
Welch JT. Tetrahedron 1987, 43: 3123 -
1c
Welch JT.Eswarakrishnan S. Fluorine in Bioorganic Chemistry Wiley; New York: 1991. -
1d
Papageorgiou C.Borer X.French RR. Bioorg. Med. Chem. Lett. 1994, 4: 267 -
1e
Fluorine-Containing Amino Acids: Synthesis and Properties
Kukhar VP.Soloshonok VA. Wiley; Chichester, UK: 1995. -
1f
Filler R.Kobayashi Y. Biomedical Aspect of Fluorine Chemistry Elsevier Biomedical Press; Amsterdam, The Netherlands: 1982. -
1g
Filler R.Kobayashi Y.Yagupolskii LM. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications Elsevier Biomedical Press; Amsterdam, The Netherlands: 1993. -
1h
Marsh ENG. Chem. Biol. 2000, 7: R153 -
1i
Tsukamoto T.Coward JK. J. Org. Chem. 1996, 61: 2497 -
2a
Ramesh B.Edward KH.Krishma K. J. Org. Chem. 2004, 69: 5468 -
2b
Anderson JT.Toogood PL.Marsh E.Neil G. Org. Lett. 2002, 4: 4281 -
2c
Xing X.Fichera A.Krishna K. Org. Lett. 2001, 3: 1285 -
2d
Renner C.Alefelder S.Bae JH.Budisa N.Huber R.Moroder L. Angew. Chem. Int. Ed. 2001, 40: 923 -
2e
Tang Y.Ghirlanda G.Petka WA.Nakajima T.Degrado WF.Tirrell DA. Angew. Chem. Int. Ed. 2001, 40: 1494 -
2f
Tang Y.Tirrell DA. J. Am. Chem. Soc. 2001, 123: 11089 -
2g
Bretscher LE.Jenkins CL.Taylor KM.DeRider ML.Raines RT. J. Am. Chem. Soc. 2001, 123: 777 -
2h
Holmgren SK.Taylor KM.Bretscher LE.Raines RT. Nature 1998, 392: 666 -
2i
Qing F.-L.Peng S.Hu C.-M. J. Fluorine Chem. 1998, 88: 79 -
2j
Welch JT. Tetrahedron 1987, 43: 3123 -
2k
Qiu XL.Meng WD.Qing FL. Tetrahedron 2004, 60: 6711 - 3
Limanto J.Shafiee A.Devine PN.Upadhyay V.Desmond RA.Foster PR.Gauthier DR.Reamer RA.Volante RP. J. Org. Chem. 2005, 70: 2372 - 4
Rodriguez M.Llinares M.Doulut S.Heitz A.Martinez J. Tetrahedron Lett. 1991, 32: 923 - For reviews on the conversion of alcohols to alkyl fluorides:
-
5a
Middleton WJ. J. Org. Chem. 1975, 40: 574 -
5b
Middleton WJ.Bingham EM. Org. Synth., Coll. Vol. VI Wiley and Sons; New York: 1988. p.835 -
5c
Hudlicky M. Org. React. 1988, 35: 513 - 6
Zhao H.Thurkauf A. Synlett 1999, 1280 - 8
Ghosk AK.Kincaid JF.Haske MG. Synthesis 1997, 541 -
9a
Zhao M.Li J.Song Z.Desmond R.Tschaen DM.Grabowski EJJ.Reider PJ. Tetrahedron Lett. 1998, 39: 5323 -
9b
Reginato G.Mordini A.Valcchi M.Grandini E. J. Org. Chem. 1999, 64: 9211 - 10
Dale JA.Dull DL.Mosher HS. J. Org. Chem. 1969, 34: 2543
References
Experimental Procedure for the Synthesis of Compound 8.
MeMgBr (681 mL of 3 M solution in Et2O, 2.04 mol) was added to a mixture of toluene (1 L) and THF (1 L) at -20 °C. A solution of the benzyl ester 7 (120 g, 510 mmol) in THF (500 mL) was added dropwise maintaining the temperature below -10 °C and the mixture was aged at 0 °C for 2 h. The mixture was slowly added to a mixture of H2O (3 L) and HOAc (600 mL) and the mixture was stirred at r.t. for 2 h. The aqueous layer was separated and the organic layer was extracted with H2O (2 × 600 mL). The product was extracted from the combined aqueous layers using CH2Cl2 and a continuous extractor (2 d). The CH2Cl2 extract was evaporated to dryness and co-evaporated with n-heptane. The residue was purified by chromatography on silica gel using EtOH and CH2Cl2 (1:25) to afford compound 8 (62 g, 72%). [α]D
20 -7.0 (c 1.0, MeOH). 1H NMR (500 MHz, CD3COCD3): δ = 1.25 (3 H, s), 1.27 (3 H, s), 1.73 (1 H, dd, J = 13.9, 6.1 Hz), 1.81 (1 H, dd, J = 13.9, 6.6 Hz), 3.67 (1 H, s), 4.01 (1 H, dd, J = 8.4, 7.3 Hz), 4.12-4.18 (1 H, m), 4.49 (1 H, dd, J = 8.3, 8.3 Hz), 6.26 (1 H, s). 13C NMR (125 MHz, CDCl3): δ = 160.05, 71.14, 71.00, 50.19, 47.66, 32.14, 28.86. Anal. Calcd for C7H13NO3: C, 52.82; H, 8.23; N, 8.80. Found: C, 52.69; H, 8.19; N, 8.76. HRMS-FAB (glycerol, KCl): m/z [M + K]+ calcd for C7H13NO3K: 198.1878; found: 198.0532.