RSS-Feed abonnieren
DOI: 10.1055/s-2005-868506
Stepwise Cross-Couplings of a Dibromo-γ-methylenebutenolide as an Access to Z-Configured α-Alkenyl-γ-alkylidenebutenolides. Straightforward Synthesis of the Antibiotic Lissoclinolide
Publikationsverlauf
Publikationsdatum:
03. Mai 2005 (online)
Abstract
The Z-isomer of α-bromo-γ-(bromomethylene)butenolide was prepared from α-angelica lactone or levulinic acid in three and four steps, respectively. Successive Stille-couplings with an unsaturated stannane, with the potential to use a different second unsaturated stannane, involved the γ-substituent first and the α-substituent thereafter. Thereby, α-alkenyl-γ-alkylidenebutenolides and their arene analogs were obtained Z-selectively.
Key words
enol lactone - natural product synthesis - palladium - regioselectivity - stereoselectivity - Stille-coupling
- 1
Baer H.Holden M.Seegal BC. J. Biol. Chem. 1946, 162: 65 - 2
Kuhnt D.Anke T.Besl H.Bross M.Herrmann R.Moeck U.Steffan B.Steglich W. J. Antibiot. 1990, 43: 1413 - Revised structure:
-
3a
Ingham CF.Massay-Westropp RA. Aust. J. Chem. 1974, 27: 1491 -
3b
Knight DW.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1975, 641 - 4
Miao S.Andersen RJ. J. Org. Chem. 1991, 56: 6275 -
5a
Knight DW. Contemp. Org. Synth. 1994, 1: 287 -
5b
Negishi E.-i.Kotora M. Tetrahedron 1997, 53: 6707 -
5c
Brückner R. Chem. Commun. 2001, 141 -
5d
Brückner R. Curr. Org. Chem. 2001, 5: 679 -
5e
Rossi R.Bellina F. In Targets in Heterocyclic Systems: Chemistry and Properties Vol. 5:Attanasi OA.Spinelli D. Società Chimica Italiana; Roma: 2002. p.169 - 6 See also:
Schmidt-Leithoff J.Brückner R. Helv. Chim. Acta 2005, 88: in press ; and the literature cited therein - 7
Sorg A.Siegel K.Brückner R. Synlett 2004, 321 - Reviews:
-
8a
Stille JK. Angew. Chem., Int. Ed. Engl. 1986, 25: 508 ; Angew. Chem. 1986, 98, 504 -
8b
Farina V.Roth GP. In Advances in Metal-Organic Chemistry Vol. 5:Liebeskind LS. JAI Press; Greenwich, Connecticut: 1996. p.1 -
8c
Mitchell TN. Synthesis 1992, 803 -
8d
Farina V.Krishnamurthy V.Scott WJ. Org. React. 1997, 50: 1 -
8e
Mitchell TN. In Metal-Catalyzed Cross-Coupling Reactions 2nd Ed.:de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.125 -
9a
Brückner R.Siegel K.Sorg A. In Strategies and Tactics in Organic Synthesis Vol. 5:Harmata M. Elsevier; Amsterdam: 2004. p.437 -
9b
Sorg A.Brückner R. Angew. Chem. Int. Ed. 2004, 43: 4523 ; Angew. Chem. 2004, 116, 4623 -
9c
Sorg A.Siegel K.Brückner R. Chem.-Eur. J. 2005, 11: 1610 - 10
Helberger JH.Ulubay S.Civelekoglu H. Liebigs Ann. 1949, 215 - 11
Grundmann C.Kober E. J. Am. Chem. Soc. 1955, 77: 2332 - 12 Synthetic sequence 22® 23® 25:
Ochoa de Echagüen C.Ortuño RM. Tetrahedron 1994, 50: 12457 - 14
Still WC.Kahn M.Mitra A. J. Org. Chem. 1978, 43: 2923 - 17
Guntrum E.Kuhn W.Spönlein W.Jäger V. Synthesis 1986, 921 - 19 Prepared by a procedure analogous to:
Gilman H.Rosenberg SD. J. Am. Chem. Soc. 1953, 75: 2507 - 20 Preparation:
Labadie JW.Tueting D.Stille JK. J. Org. Chem. 1983, 48: 4634 - Conditions:
-
21a
Liebeskind LS.Fengl RW. J. Org. Chem. 1990, 55: 5359 -
21b
Farina V.Kapadia S.Krishnan B.Wang C.Liebeskind LS. J. Org. Chem. 1994, 59: 5905 - 22 Prepared by a procedure analogous to:
Betzer J.-F.Delaloge F.Muller B.Pancrazi A.Prunet J. J. Org. Chem. 1997, 62: 7768 - 23
Betzer J.-F.Pancrazi A. Synlett 1998, 1129 - 28
Görth F.Brückner R. Synthesis 1999, 1520 - 29
Davidson BS.Ireland CM. J. Nat. Prod. 1990, 53: 1036 -
30a
Gallo GG.Coronelli C.Vigevani A.Lancini GC. Tetrahedron 1969, 25: 5677 -
30b
Pagani H.Lancini G.Tamoni G.Coronelli C. J. Antibiot. 1973, 26: 1 - 31
Xu C.Negishi E.-i. Tetrahedron Lett. 1999, 40: 431 - 32
Rossi R.Bellina F.Biagetti M.Mannina L. Tetrahedron Lett. 1998, 39: 7799 -
33a Two-dimensional structure:
Strain HH.Svec WA.Aitzetmüller K.Grandolfo MC.Katz JJ.Kjøsen H.Norgård S.Liaaen-Jensen S.Haxo FT.Wegfahrt P.Rapoport H. J. Am. Chem. Soc. 1971, 93: 1823 -
33b Three-dimensional structure:
Strain HH.Svec WA.Wegfahrt P.Rapoport H.Haxo FT.Norgård S.Kjøsen H.Liaaen-Jensen S. Acta Chem. Scand., Sect. B 1976, 30: 109 -
33c
Johansen JE.Borch G.Liaaen-Jensen S. Phytochemistry 1980, 19: 441 -
34a Two-dimensional structure:
Johansen JE.Svec WA.Liaaen-Jensen S.Haxo FT. Phytochemistry 1974, 13: 2261 -
34b Three-dimensional structure:
Aakermann T.Liaaen-Jensen S. Phytochemistry 1992, 31: 1779
References
Compound 24 resulted from an initial 1:1-addition, rather than 2:1-addition of bromine to protoanemonin (2).
15All new compounds except 23 gave satisfactory 1H and 13C NMR spectra and provided either correct combustion analyses or HRMS.
16( Z )-3-Bromo-5-(bromomethylene)-2(5 H )-furanone (Z-8): Et3N (0.46 mL, 0.34 g, 3.3 mmol, 1.1 equiv) was added dropwise at -78 °C to a solution of 3,5-dibromo-5-(bromomethyl)-2(5H)-furanone (25) (1.002 g, 2.993 mmol) and hydroquinone (a few crystals) in CH2Cl2 (5 mL). The mixture was allowed to warm to 0 °C where it darkened gradually. After 1 h and without aqueous work-up, purification by flash chromatography on silica gel (cyclohexane-EtOAc, 10:1→5:1) furnished the title compound (0.5826 g, 78%) as a colorless solid (mp 72-73 °C). 1H NMR (300.1 MHz, CDCl3/TMS): δ = 6.19 (s, 1′-H), 7.49 (s, 4-H). 13C NMR (125.7 MHz, CDCl3/CHCl3): δ = 93.17 (C-1′), 114.53 (C-3), 139.36 (C-4), 150.85 (C-5), 163.97 (C-2). Anal. calcd for C5H2Br2O2 (251.8): C 23.65; H 0.79. Found: C 23.67; H 0.51.
18The difficulty of this step also devaluated an improved preparation of bromobutenolide 23 from trans-2-pentenoic acid: 1) NBS (1.04 equiv), AIBN (7.6 mol%), CCl4, reflux, 3 h; Et3N (1.5 equiv); filtration; Br2 (1.20 equiv), reflux, 1.5 h; 91%; 2) H2O, reflux, 5 h; 74%.
24The reaction of Z-8 with 35 under the hitherto used conditions [Pd(dba)2, AsPh3, CuI] was troublesome, leading to inseparable isomeric mixtures of 36 with up to 15% of its 1′-E-isomer. Running the same reaction in the absence of CuI increased the Z:E-ratio to 94:6.
25(Z )-5-( trans -4-Hydroxy-2-butenylidene)-3-[( Z )-3-hydroxy-1-methyl-1-propenyl]-2(5 H )-furanone (32; 95:5 mixture with the E-isomer): Yellow solid; mp 154-156 °C. 1H NMR (499.9 MHz, CD3OD-D2HCOD): δ = 1.93 (d, 4 J 1 ′′ -Me,2 ′′ = 1.1 Hz, 1′′-H3), 4.20 (dd, J 4 ′ ,3 ′ = 5.2 Hz, 4 J 4 ′ ,2 ′ = 1.7 Hz, 4′-H2), 4.30 (d, J 3 ′′ ,2 ′′ = 6.5 Hz, 3′′-H2), 6.00 (d, J 1 ′ ,2 ′ = 11.4 Hz, 1′-H), 6.16 (dtd, J 3 ′ ,2 ′ = 15.4 Hz, J 3 ′ ,4′ = 5.3 Hz, 4 J 3 ′ ,1 ′ = 0.9 Hz, 3′-H), 6.76 (ddt, J 2 ′ ,3 ′ = 15.5 Hz, J 2 ′ ,1 ′ = 11.4 Hz, 4 J 2 ′ ,4 ′ = 1.9 Hz, 2′-H), 6.96 (incompletely resolved br tq, J 2 ′′ ,3 ′′ = 6.5 Hz, 4 J 2 ′′ ,1 ′′ -Me = 1.1 Hz, 2′′-H), 7.41 (s, 4-H). 13C NMR (125.7 MHz, CD3OD-D2HCOD): δ = 14.71 (1′′-CH3), 59.79 (C-3′′), 63.14 (C-4′), 114.39 (C-1′), 123.89 (C-2′), 128.10 (low intensity; C-1′′), 134.75 (C-2′′), 135.80 (C-4), 140.29 (C-3′), 148.53 (C-5), 169.18 (C-2). HRMS (EI, 70 eV): m/z calcd for C12H12O3, 204.078645; found, 204.078238 (M+ - H2O).
26(Z )-5-( trans -4-Hydroxy-2-methyl-2-butenylidene)-3-( trans -3-hydroxy-1-propenyl)-2(5 H )-furanone (37; 92:8 mixture with the E-isomer): Yellow solid; mp 111-113 °C. 1H NMR (499.9 MHz, CD3OD-D2HCOD): δ = 2.06 (d, 4 J Me,1 ′ = 1.1 Hz, 2′-Me), 4.22 (dd, J 3 ′′ ,2 ′′ = 5.1 Hz, 4 J 3 ′′ ,1 ′′ = 1.9 Hz, 3′′-H2), 4.26 (d, J 4 ′ ,3 ′ = 6.5 Hz, 4′-H2), 5.83 (br s, 1′-H), 5.99 (incompletely resolved tqd, J 3 ′ ,4 ′ = 6.6 Hz, 4 J 3 ′ ,2 ′ -Me = 4 J 3 ′ ,1 ′ = 1.1 Hz, 3′-H), 6.45 (dt, J 1 ′′ ,2 ′′ = 16.0 Hz, 4 J 1 ′′ ,3 ′′ = 1.9 Hz, 1′′-H), 6.90 (dt, J 2 ′′ ,1 ′′ = 16.0 Hz, J 2 ′′ ,3 ′′ = 5.0 Hz, 2′′-H), 7.38 (s, 4-H). 13C NMR (125.7 MHz, CD3OD-D2HCOD): δ = 15.46 (2′-CH3), 59.56 (C-4′), 63.18 (C-3′′), 118.89 (C-1′), 119.13 (C-1′′), 138.38 (C-2′′), 138.51 (C-4), 139.14 (C-3′), 148.09 (very low intensity, C-5), 170.50 (very low intensity, C-2); the signals of C-3 and C-2′ were not identified unambiguously. Anal. calcd for C12H14O4 (204.1): C 64.85; H 6.35. Found: C 64.55; H 6.32.
27(Z )-5-( trans -4-Hydroxy-2-butenylidene)-3-( trans -3-hydroxy-1-propenyl)-2(5 H )-furanone (38): Stannane 34 (586 mg, 1.69 mmol, 2.20 equiv) was added to a degassed solution of dibromobutenolide Z-8 (192 mg, 0.768 mmol), Pd(dba)2 (20.2 mg, 35.1 µmol, 5 mol%), and AsPh3 (37.2 mg, 0.122 mmol, 0.16 equiv) in THF (2.0 mL). The resulting solution was heated at 50-60 °C for 1.5 h, cooled to room temperature, and concentrated in vacuo. Flash chromatography (cyclohexane-EtOAc, 2:1→1:1; tert-butylmethylether-EtOAc, 1:1) provided the title compound (105.0 mg, 66%) as a yellow solid; mp 124-126 °C (Ref. [28] 126-127 °C).