ABSTRACT
Transplantation results in exposure of the graft vasculature to warm and cold ischemia, followed by perfusion by circulating blood constituents and obligatory oxidant stress. Further graft injury occurs as consequences of acute humoral cellular rejection or chronic transplant vasculopathy, or both. Extracellular nucleotide stimulation of purinergic type 2 (P2) receptors are key components of platelet, endothelial cell (EC), and leukocyte activation resulting in vascular thrombosis and inflammation in vivo. CD39, the prototype nucleoside triphosphate diphosphohydrolase (NTPDase-1) is highly expressed on endothelium; in contrast, CD39L1/NTPDase-2 (a preferential adenosine triphosphatase [ATPase]) is found on vascular adventitial cells. Both ectoenzymes influence thrombogenesis by the regulated hydrolysis of extracellular nucleotides that differentially regulate P2-receptor activity and function in platelets and vascular cells. The intracytoplasmic domains of NTPDase-1 may also independently influence cellular activation and proliferation. NTPDase activity is substantively lost in the vasculature of injured or rejected grafts. A role for NTPDase-1 in thromboregulation has been validated by generation of mutant mice either null for cd39 or overexpressing human CD39. Administration of soluble NTPDase or induction of CD39 by adenoviral vectors, or both, are also of benefit in several models of transplantation. Administration of soluble CD39 or targeted expression may have future therapeutic application in transplantation-associated and other vascular diseases.
KEYWORDS
Antibodies - CD39 - endothelial cell - kidney - NTPDase - platelets - transplantation - vasculature
REFERENCES
1
Luthje J.
Origin, metabolism and function of extracellular adenine nucleotides in the blood (Review).
Klin Wochenschr.
1989;
67
317-327
, (published erratum appears in Klin Wochenschr 1989;67:558)
2
Dubyak G R, Elmoatassim C.
Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides (Review).
Am J Physiol.
1993;
265
C577-C606
3
Abbracchio M P, Burnstock G.
Purinoceptors-are there families of P2X and P2Y purinoceptors (Review).
Pharmacol Ther.
1994;
64
445-475
4
Harden T K, Lazarowski E R, Boucher R C.
Release, metabolism and interconversion of adenine and uridine nucleotides: implications for G protein-coupled P2 receptor agonist selectivity.
Trends Pharmacol Sci.
1997;
18
43-46
5
Weisman G A, Erb L, Garrad R C et al..
P2Y nucleotide receptors in the immune system: signaling by a P2Y(2) receptor in U937 monocytes.
Drug Dev Res.
1998;
45
222-228
6
Robson S C, Enjyoji K, Goepfert C et al..
Modulation of extracellular nucleotide-mediated signaling by CD39/nucleoside triphosphate diphosphohydrolase-1 (Review).
Drug Dev Res.
2001;
53
193-207
7
Kaczmarek E, Koziak K, Sevigny J et al..
Identification and characterization of CD39 vascular ATP diphosphohydrolase.
J Biol Chem.
1996;
271
33116-33122
8
Sevigny J, Sundberg C, Braun N et al..
Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation.
Blood.
2002;
99
2801-2809
9
Marcus A J, Broekman M J, Drosopoulos J HF et al..
The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39.
J Clin Invest.
1997;
99
1351-1360
10
Marcus A J, Broekman M J, Drosopoulos J H et al..
Metabolic control of excessive extracellular nucleotide accumulation by CD39/ecto-nucleotidase-1: implications for ischemic vascular diseases.
J Pharmacol Exp Ther.
2003;
305
9-16
11
Robson S, Schulte am Esch II J, Bach F.
Factors in xenograft rejection.
Ann N Y Acad Sci.
1999;
875
261-276
12
Buell G, Collo G, Rassendren F.
P2X receptors-an emerging channel family (Review).
Eur J Neurosci.
1996;
8
2221-2228
13
Fredholm B B, Abbracchio M P, Burnstock G et al..
Nomenclature and classification of purinoreceptors.
Pharmacol Rev.
1994;
46
143-152
14
Roman R M, Fitz J G.
Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function (Review).
Gastroenterology.
1999;
116
964-979
15
Palmer T M, Stiles G L.
Adenosine receptors.
Neuropharmacology.
1995;
34
683-694
16
Plesner L.
Ecto-ATPases: identities and functions (Review).
Int Rev Cytol.
1995;
158
141-214
17
Baurand A, Eckly A, Bari N et al..
Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors.
Thromb Haemost.
2000;
84
484-491
18
Hourani S MO, Hall D A.
Receptors for ADP on human blood platelets (Review).
Trends Pharmacol Sci.
1994;
15
103-107
19
Fijnheer R, Boomgaard M N, van den Eertwegh A J et al..
Stored platelets release nucleotides as inhibitors of platelet function.
Thromb Haemost.
1992;
68
595-599
20
Lages B, Weiss H J.
Enhanced increases in cytosolic Ca2+ in ADP-stimulated platelets from patients with delta-storage pool deficiency-a possible indicator of interactions between granule-bound ADP and the membrane ADP receptor.
Thromb Haemost.
1997;
77
376-382
21
Enjyoji K, Sevigny J, Lin Y et al..
Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation.
Nat Med.
1999;
5
1010-1017
22
Goepfert C, Sundberg C, Sevigny J et al..
Disordered cellular migration and angiogenesis in cd39-null mice.
Circulation.
2001;
104
3109-3115
23
Zimmermann H.
Two novel families of ectonucleotidases: molecular structure, catalytic properties and a search for function.
Trends Pharmacol Sci.
1999;
20
231-236
24
Robson S, Sevigny J, Imai M, Enjyoji K.
Thromboregulatory potential of endothelial CD39/nucleoside triphosphate diphosphohydrolase: modulation of purinergic signalling in platelets.
Emerging Therapeutic Targets.
2000;
4
155-171
25
Zimmermann H.
5'-nucleotidase: molecular structure and functional aspects.
Biochem J.
1992;
285
345-365
26
Resta R, Yamashita Y, Thompson L F.
Ecto-enzyme and signaling functions of lymphocyte CD73.
Immunol Rev.
1998;
161
95-109
27
Goding J W, Howard M C.
Ecto-enzymes of lymphoid cells.
Immunol Rev.
1998;
161
5-10
28
Kansas G S, Wood G S, Tedder T F.
Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes.
J Immunol.
1991;
146
2235-2244
29
Maliszewski C R, Delespesse G J, Schoenborn M A et al..
The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization.
J Immunol.
1994;
153
3574-3583
30
Favaloro E J.
Differential expression of surface antigens on activated endothelium.
Immunol Cell Biol.
1993;
71
571-581
31
Wang T -F, Guidotti G.
CD39 is an ecto-(Ca2+, Mg 2+)-apyrase.
J Biol Chem.
1996;
271
9898-9901
32
Pinsky D J, Broekman M J, Peschon J J et al..
Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain.
J Clin Invest.
2002;
109
1031-1040
33
Handa M, Guidotti G.
Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum ).
Biochem Biophys Res Commun.
1996;
218
916-923
34
Schulte am Esch II J, Sevigny J, Kaczmarek E et al..
Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity.
Biochemistry.
1999;
38
2248-2258
35
Wang T F, Guidotti G.
Golgi localization and functional expression of human uridine diphosphatase.
J Biol Chem.
1998;
273
11392-11399
36 Zimmermann H, Beaudoir A R, Boller H et al.. Nomenclature for two families of novel ectonucleotidases. In: Vanduffel L Proceedings of the Second International Workshop on Ecto-ATPases and Related Ectonucleotidases Maastricht, The Netherlands; Shaker Publishing BV 2000: 1-8
37 Zimmermann H, Braun N, Heine P et al.. Molecular and functional properties of E-NTPDase-1, E-NTPDase-2 and 5'-ectonucleotidase. In: Vanduffel, L. Proceedings of the Second International Workshop on Ecto-ATPases and Related Ectonucleotidases Maastricht, The Netherlands; Shaker Publishing BV 2000: 18-25
38
Wang T F, Handa M, Guidotti G.
Structure and function of ectoapyrase (CD39).
Drug Dev Res.
1998;
45
245-252
39
Chadwick B P, Frischauf A M.
The CD39-like gene family-identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster
.
Genomics.
1998;
50
357-367
40
Mulero J J, Yeung G, Nelken S T, Ford J E.
CD39L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates.
J Biol Chem.
1999;
274
20064-20067
41
Kaneider N C, Egger P, Dunzendorfer S et al..
Reversal of thrombin-induced deactivation of CD39/ATPDase in endothelial cells by HMG-CoA reductase inhibition: effects on Rho-GTPase and adenosine nucleotide metabolism.
Arterioscler Thromb Vasc Biol.
2002;
22
894-900
42
Vigne P, Breittmayer J P, Frelin C.
Analysis of the influence of nucleotidases on the apparent activity of exogenous ATP and ADP at P2Y(1) receptors.
Br J Pharmacol.
1998;
125
675-680
43
Sasamura H, Dzau V J, Pratt R E.
Desensitization of angiotensin receptor function.
Kidney Int.
1994;
46
1499-1501
44
Ross R.
The pathogenesis of atherosclerosis: a perspective for the 1990s (Review).
Nature.
1993;
362
801-809
45 Marcus A J. Pathogenesis of atherosclerosis: special pathogenetic factors-inflammation and immunity: platelets. In: Fuster V, Ross R, Topol EJ Atherosclerosis and Coronary Artery Disease Philadelphia; Lippincott-Raven 1996: 607-637
46
Guerci B, Kearney-Schwartz A, Bohme P, Zannad F, Drouin P.
Endothelial dysfunction and type 2 diabetes. Part 1: physiology and methods for exploring the endothelial function (Review).
Diabetes Metab.
2001;
27
425-434
47
Robson S C, Candinas D, Hancock W W et al..
Role of endothelial cells in transplantation (Review).
Int Arch Allergy Immunol.
1995;
106
305-322
48
Platt J L, Lin S S, McGregor C GA.
Acute vascular rejection. (Review).
Xenotransplantation.
1998;
5
169-175
49
Platt J L.
New directions for organ transplantation (Review).
Nature.
1998;
392
11-17
50
Cotran R S, Pober J S.
Effects of cytokines on vascular endothelium: their role in vascular and immune injury.
Kidney Int.
1989;
35
969-975
51
Pober J S, Cotran R S.
The role of endothelial cells in inflammation.
Transplantation.
1990;
50
537-544
52 Bevalicqua M P, Gimbrone M AJ. Modulation of endothelial cell procoagulant and fibrinolytic activities by inflammatory mediators. In: Ryan US Endothelial Cells Boca Raton, FL; CRC Press 1988: 107-118
53
Pober J S, Cotran R S.
Cytokines and endothelial cell biology (Review).
Physiol Rev.
1990;
70
427-451
54
Bach F H, Robson S C, Ferran C et al..
Endothelial cell activation and thromboregulation during xenograft rejection (Review).
Immunol Rev.
1994;
141
5-30
55
Dalmasso A P.
The complement system in xenotransplantation (Review).
Immunopharmacology.
1992;
24
149-160
56
Baldwin W M, Pruitt S K, Brauer R B, Daha M R, Sanfilippo F.
Complement in organ transplantation - contributions to inflammation, injury, and rejection (Review).
Transplantation.
1995;
59
797-808
57
Murdoch C, Finn A.
Chemokine receptors and their role in vascular biology (Review).
J Vasc Res.
2000;
37
1-7
58
Albelda S M, Smith C W, Ward P A.
Adhesion molecules and inflammatory injury (Review).
FASEB J.
1994;
8
504-512
59
Esmon C T.
Cell mediated events that control blood coagulation and vascular injury (Review).
Annu Rev Cell Biol.
1993;
9
1-26
60
Savage C O, Hughes C C, McIntyre B W, Picard J K, Pober J S.
Human CD4+ T cells proliferate to HLA-DR+ allogeneic vascular endothelium. Identification of accessory interactions.
Transplantation.
1993;
56
128-134
61
Murray A G, Khodadoust M M, Pober J S, Bothwell A LM.
Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and co-stimulation by ligands for human CD2 and CD28.
Immunity.
1994;
1
57-63
62
Bach F H, Robson S C, Ferran C et al..
Endothelial cell activation and thromboregulation during xenograft rejection (Review).
Immunol Rev.
1994;
141
5-30
63
Crawford J M.
Cellular and molecular biology of the inflamed liver (Review).
Curr Opin Gastroenterol.
1997;
13
175-185
64
Cotran R S, Pober J S.
Cytokine-endothelial interactions in inflammation, immunity, and vascular injury.
J Am Soc Nephrol.
1990;
1
225-235
65
Bilzer M, Gerbes A L.
Preservation injury of the liver: mechanisms and novel therapeutic strategies (Review).
J Hepatol.
2000;
32
508-515
66
Game D S, Warrens A N, Lechler R I.
Rejection mechanisms in transplantation (Review).
Wien Klin Wochenschr.
2001;
113
832-838
67
Serracino-Inglott F, Habib N A, Mathie R T.
Hepatic ischemia-reperfusion injury (Review).
Am J Surg.
2001;
181
160-166
68
Horie Y, Wolf R, Anderson D C, Granger D N.
Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion.
J Clin Invest.
1997;
99
781-788
69
Lentsch A B, Kato A, Yoshidome H, McMasters K M, Edwards M J.
Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury (Review).
Hepatology.
2000;
32
169-173
70
Cywes R, Mullen J B, Stratis M A et al..
Prediction of the outcome of transplantation in man by platelet adherence in donor liver allografts. Evidence of the importance of prepreservation injury.
Transplantation.
1993;
56
316-323
71
Pinsky D J, Yan S F, Lawson C et al..
Hypoxia and modification of the endothelium - implications for regulation of vascular homeostatic properties (Review).
Semin Cell Biol.
1995;
6
283-294
72
Lu C Y, Penfield J G, Kielar M L, Vazquez M A, Jeyarajah D R.
Hypothesis: Is renal allograft rejection initiated by the response to injury sustained during the transplant process (Review).
Kidney Int.
1999;
55
2157-2168
73
Lechler R I, Lombardi G, Batchelor J R, Reinsmoen N, Bach F H.
The molecular basis of alloreactivity (Review).
Immunol Today.
1990;
11
83-88
74
Bach F H.
Reconsideration of the mechanism of first-set vascularized allograft rejection (Review).
Hum Immunol.
1990;
28
263-269
75
Brindle N.
Role of vascular endothelial cells in the allograft response.
Eye.
1995;
9
167-172
76
Grey S T, Hancock W W.
A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein c by human mononuclear phagocytes.
J Immunol.
1996;
156
2256-2263
77 Gamry Jr E R, Mehra M R. Transplantation. 2004 77(9 Suppl): S68-S74
78
Demetris A J, Murase N, Lee R G et al..
Chronic rejection. A general overview of histopathology and pathophysiology with emphasis on liver, heart and intestinal allografts.
Ann Transplant.
1997;
2
27-44
79
Hosenpud J D.
Immune mechanisms of cardiac allograft vasculopathy: an update.
Transpl Immunol.
1993;
1
237-249
80
Libby P, Pober J S.
Chronic rejection.
Immunity.
2001;
14
387-397
81
Alexander R W.
Oxidized LDL autoantibodies, endothelial dysfunction, and transplant-associated arteriosclerosis (Comment).
Arterioscler Thromb Vasc Biol.
2002;
22
1950-1951
82
Calne R Y.
Organ transplantation between widely disparate species.
Transplant Proc.
1970;
2
550-556
83
Sachs D H, Sykes M, Robson S C, Cooper D KC.
Xenotransplantation (Review).
Adv Immunol.
2001;
79
129-223
84
Bach F H, Winkler H, Ferran C, Hancock W W, Robson S C.
Delayed xenograft rejection (Review).
Immunol Today.
1996;
17
379-384
85
Robson S C, Cooper D KC, d’Apice A JF.
Disordered regulation of coagulation and platelet activation in xenotransplantation (Review).
Xenotransplantation.
2000;
7
166-176
86
Robson S C.
Acute vascular rejection/delayed xenograft rejection and consumptive coagulopathy in xenotransplantation (Review).
Curr Opin Organ Transplantation March.
2003;
8
76-82
87
Imai M, Takigami K, Guckelberger O et al..
CD39/vascular ATP diphosphohydrolase modulates xenograft survival.
Transplant Proc.
2000;
32
969
88
Candinas D, Koyamada N, Miyatake T et al..
Loss of rat glomerular ATP diphosphohydrolase activity during reperfusion injury is associated with oxidative stress reactions.
Thromb Haemost.
1996;
76
807-812
89
Guckelberger O, Sun X, Sévigny J et al..
Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia-reperfusion injury.
Thromb Haemost.
2004;
91
576-586
90
Jacobson J, Odlind B, Tufveson G, Wahlberg J.
Effects of cold ischemia and reperfusion on trapping of erythrocytes in the rat kidney.
Transplantation International.
1988;
1
75-79
91
Land W, Schneeberger H, Schleibner S et al..
The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants.
Transplantation.
1994;
57
211-217
92
Adams D H, Wang L, Hubscher S G, Neuberger J M.
Hepatic endothelial cells.
Transplantation.
1989;
47
479-482
93
Neil D A, Adams D H, Gunson B, Hubscher S G.
Is chronic rejection of liver transplants different from graft arteriosclerosis of kidney and heart transplants?.
Transplant Proc.
1997;
29
2539-2540
94
Clavien P A, Harvey P, Strasberg S M.
Preservation and reperfusion injuries in liver allografts.
Transplantation.
1992;
53
957-978
95
Clavien P A.
Sinusoidal endothelial cell injury during hepatic preservation and reperfusion (Review).
Hepatology.
1998;
28
281-285
96
Pinsky D J, Mehmet C O, Koga S et al..
Cardiac preservation is enhanced in a heterotopic rat transplant model by supplementing the nitric oxide pathway.
J Clin Invest.
1994;
93
2291-2297
97
Jeannet M, Pinn V W, Flax M H, Winn H J, Russell P S.
Humoral antibodies in renal allotransplantation in man.
N Engl J Med.
1970;
282
111-117
98
Colvin R B.
The pathogenesis of vascular rejection.
Transplant Proc.
1991;
23
2052-2055
99
Alexandre G P.
From ABO-incompatible human renal transplantation to xenotransplantation.
Xenotransplantation.
2004;
11
233-236
100
Billingham M E.
Graft coronary disease-old and new dimensions.
Cardiovasc Pathol.
1997;
6
95-101
101
Miyatake T, Koyamada N, Hancock W W, Soares M P, Bach F H.
Survival of accommodated cardiac xenografts upon retransplantation into cyclosporine-treated recipients.
Transplantation.
1998;
65
1563-1569
102
Lin Y, Soares M P, Sato K et al..
Accommodated xenografts survive in the presence of anti-donor antibodies and complement that precipitate rejection of naive xenografts.
J Immunol.
1999;
163
2850-2857
103
Soares M P, Lin Y, Anrather J et al..
Expression of heme oxygenase-1 can determine cardiac xenograft survival.
Nat Med.
1998;
4
1073-1077
104
Hancock W W, Gee D, de Moerloose P et al..
Immunohistochemical analysis of serial biopsies taken during human renal allograft rejection: changing profile of infiltrating cells and involvement of the coagulation system.
Transplantation.
1985;
39
430-438
105
Edwards R L, Rickles F R.
The role of leukocytes in the activation of blood coagulation (Review).
Semin Hematol.
1992;
29
202-212
106
Platt J L, Bach F H.
Discordant xenografting: challenges and controversies (Review).
Curr Opin Immunol.
1991;
3
735-739
107
Platt J L.
Xenotransplantation-recent progress and current perspectives (Review).
Curr Opin Immunol.
1996;
8
721-728
108
Taniguchi S, Cooper D.
Clinical xenotransplantation-past, present and future (Review).
Ann R Coll Surg Engl.
1997;
79
13-19
109
Goodman D J, Pearse M J, Dapice A JF.
Overcoming hyperacute xenograft rejection with transgenic animals (Review).
BioDrugs.
1998;
9
219-234
110
Dorling A, Lechler R I.
Prospects for xenografting (Review).
Curr Opin Immunol.
1994;
6
765-769
111
Dalmasso A P, Vercellotti G M, Fischel R J et al..
Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients.
Am J Pathol.
1992;
140
1157-1166
112
Galili U.
Interaction of the natural anti-gal antibody with alpha-galactosyl epitopes-a major obstacle for xenotransplantation in humans.
Immunol Today.
1993;
14
480-482
113
Cooper D KC, Ye Y, Niekrasz M et al..
Specific intravenous carbohydrate therapy-a new concept in inhibiting antibody-mediated rejection experience with ABO-incompatible cardiac allografting in the baboon.
Transplantation.
1993;
56
769-777
114
Cooper D KC, Koren E, Oriol R.
α-galactosyl oligosaccharides and discordant xenografting.
Xeno.
1994;
2
32-38
115
Rosengard A M, Cary N R, Langford G A et al..
Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs. A potential approach for preventing xenograft rejection.
Transplantation.
1995;
59
1325-1333
116
Sandrin M S, Fodor W L, Mouhtouris E et al..
Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis.
Nat Med.
1995;
1
1261-1267
117
Sandrin M S, Fodor W L, Cohney S et al..
Reduction of the major porcine xenoantigen ga1-alpha(1,3)gal by expression of alpha(1,2)fucosyltransferase.
Xenotransplantation.
1996;
3
134-140
118
Byrne G, McCurry K R, Martin M J et al..
Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage.
Transplantation.
1997;
63
149-155
119
Diamond L E, Mccurry K R, Martin M J et al..
Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium.
Transplantation.
1996;
61
1241-1249
120
Hancock W W.
Delayed xenograft rejection.
World J Surg.
1997;
21
917-923
121
Li Y, Csizmadia E, Sevigny J, Enjyoji K, Robson S C.
CD39 (NTPDase1) modulates allograft rejection and cellular immune responses.
American Journal of Transplantation.
2003;
3(suppl)
545
122
Dwyer K M, Robson S C, Nandurkar H H et al..
Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation.
J Clin Invest.
2004;
113
1440-1446
123 Bakker W, Mui K, van Son W. Detection of glomerular ischemia in chronic graft failure by quantification of the glomerular ectonucleotidase and ecto-ATPase. In: Vanduffel, L. Proceedings of the Second International Workshop on Ecto-ATPases and Related Ectonucleotidases Maastricht, The Netherlands; Shaker Publishing BV 2000: 44-49
124
Browder T, Folkman J, Pirie-Shepherd S.
The hemostatic system as a regulator of angiogenesis (Review).
J Biol Chem.
2000;
275
1521-1524
125
Imai M, Takigami K, Guckelberger O et al..
Modulation of nucleotide triphosphate diphosphohydrolase-1 (NTPDase-1)/cd39 in xenograft rejection.
Mol Med.
1999;
5
743-752
126
Imai M, Kaczmarek E, Koziak K et al..
Suppression of ATP diphosphohydrolase/CD39 in human vascular endothelial cells.
Biochemistry.
2000;
38
13473-13479
127
Robson S C, Kaczmarek E, Siegel J B et al..
Loss of ATP diphosphohydrolase activity with endothelial cell activation.
J Exp Med.
1997;
185
153-163
128
Robson S C, Daoud S, Begin M et al..
Modulation of vascular ATP diphosphohydrolase by fatty acids.
Blood Coagul Fibrinolysis.
1997;
8
21-27
129
Imai M, Takigami K, Guckelberger O et al..
Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival.
Transplantation.
2000;
70
864-870
130
Gangadharan S P, Imai M, Rhynhart K K et al..
Targeting platelet aggregation: CD39 gene transfer augments nucleoside triphosphate diphosphohydrolase activity in injured rabbit arteries.
Surgery.
2001;
130
296-303
131
Dwyer K M, Robson S C, Nandurkar H H et al..
Inhibition of thrombosis in transgenic mice expressing human CD39.
American Journal of Transplantation.
2003;
3(suppl)
468
132
Koyamada N, Miyatake T, Candinas D et al..
Apyrase administration prolongs discordant xenograft survival.
Transplantation.
1996;
62
1739-1743
133
Koziak K, Kaczmarek E, Kittel A et al..
Palmitoylation targets CD39/endothelial ATP diphosphohydrolase to caveolae.
J Biol Chem.
2000;
275
2057-2062
134
Kittel A, Kaczmarek E, Sevigny J et al..
CD39 as a caveolar-associated ectonucleotidase.
Biochem Biophys Res Commun.
1999;
262
596-599
135
Shaul P W, Anderson R GW.
Role of plasmalemmal caveolae in signal transduction (Review).
Am J Physiol Lung Cell Mol Physiol.
1998;
19
L843-L851
136
Hall R A, Ostedgaard L S, Premont R T et al..
A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins.
Proc Natl Acad Sci U S A.
1998;
95
8496-8501
137
Hung A Y, Sheng M.
PDZ domains: structural modules for protein complex assembly.
J Biol Chem.
2002;
277
5699-5702
138
Saras J, Heldin C H.
PDZ domains bind carboxy-terminal sequences of target proteins.
Trends Biochem Sci.
1996;
21
455-458
139
Nourry C, Grant S G, Borg J P.
PDZ domain proteins: plug and play! (Review).
Sci STKE.
2003;
2003
RE7
140
Fan J S, Zhang M.
Signaling complex organization by PDZ domain proteins.
Neurosignals.
2002;
11
315-321
141
Zhong X T, Malhotra R, Guidotti G.
Regulation of yeast ectoapyrase Ynd1p activity by activator subunit Vma13p of vacuolar H+ -ATPase.
J Biol Chem.
2000;
275
35592-35599
142
Wang D K, Li Z B, Messing E M, Wu G.
Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM.
J Biol Chem.
2002;
277
36216-36222
143
Goepfert C, Imai M, Brouard S et al..
CD39 modulates endothelial cell activation and apoptosis.
Mol Med.
2000;
6
591-603
144
Erb L, Liu J, Ockerhausen J et al..
An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(0)-mediated signal transduction.
J Cell Biol.
2001;
153
491-501
145
Teixeira A, Chaverot N, Schroder C et al..
Requirement of caveolae microdomains in extracellular signal-regulated kinase and focal adhesion kinase activation induced by endothelin-1 in primary astrocytes.
J Neurochem.
1999;
72
120-128
146
Mizumoto N, Kumamoto T, Robson S C et al..
CD39 is the dominant Langerhans cell associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness.
Nat Med.
2002;
8
358-365
S. C RobsonM.D. Ph.D.
Transplantation Center, Research North 99 Brookline Avenue
Room 301, Beth Israel Deaconess Medical Center, Boston, MA 02215
Email: srobson@bidmc.harvard.edu