Abstract
Despite unprecedented advances in enantioselective synthesis and separation techniques, large scale production of enantiopure substances, such as required by the pharmaceutical and pesticide industries, is still heavily dependent upon the separation of diastereomers obtained from the enantiomers and an optically active resolving agent. Economy of the process can be much enhanced when only a half-equivalent of the resolving agent is used. Substitution of the other half-equivalent by some achiral compound, as well as separation of the unreacted portion of the substrate from the diastereomer by various physical methods, is discussed. Methods for selecting optimal conditions of resolution and for the purification of partially resolved mixtures are also discussed.
1 Introduction and Historical Background
2 Resolution Methods Using a Half-Equivalent of Resolving Agent
3 Selection of the Optimal Resolving Agent and Solvent
4 Phase Transformations of Diastereomeric Salts or Complexes (Kinetic and Thermodynamic Control)
5 Resolution by Formation of Covalently Bound Diastereomers
6 Racemization of an Unwanted Enantiomer
7 Deracemization
8 Resolution of Conglomerate-Forming Racemates by Induced Crystallization
9 Purification of Partially Resolved Mixtures by Crystallization of Conglomerate-Forming and Racemic-Phase-Forming Compounds
10 Purification of a Partially Resolved Mixture of Racemic-Phase-Forming Enantiomers by Fractional Precipitation
11 Resolution by Supercritical Fluid Extraction or Distillation
12 The Non-Linear Character of the Resolution Processes
Key words
resolution of enantiomers - half-equivalent methods - choice of optimal conditions
References 1 Present-day nomenclature will be used throughout this review.
2a
Stereoselective Synthesis, In Houben-Weyl Methods of Organic Synthesis
Vol. E21a-E21f:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann EG.
Georg Thieme Verlag;
Stuttgart, New York:
1996.
2b
Stereoselective Synthesis, A Practical Approach
Nógrádi M.
VCH;
Weinheim:
1995.
3 Catalog prices, 2004: (R )- 1,1′-binaphthol: ı 44/g; (R )-2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (BINAP): ı 335/g; (-)-α-pinene: ı 12/g; (+)-α-pinene: ı 13/g; (+)-1,4-bis(diphenylphospino)-1,4-dideoxy-2,3-O -isopropylidene-d -threitol [(+)-DIOP]: ı 118/g; (R ,R )-tartaric acid: ı 46/100 g; (S ,S )-tartaric acid: ı 70/100 g; dibenzoyl-(R ,R )- tartaric acid: ı 81/100 g; (S )-lactic acid: ı 33/kg; (R )-1-phenylethylamine: ı 82/100 mL; (R )-1-phenylethylamine: ı 84/100 g; brucine hydrate: ı 83/100 g; quinine: ı112/100 g.
4
Pasteur L.
C. R. Hebd. Seances Acad. Sci.
1853,
37:
162
5
Pope WJ.
Peachey SJ.
J. Chem. Soc.
1899,
75:
1066
6a inventors; Hung. Patent 146896.
, Chem. Abstr.
1958 , 54 , 11287
6b inventors; Hung. Patent 163526.
, Chem. Abstr.
1984 , 79 , 104924
7 inventors; Hung. Patent 177583.
, Chem. Abstr.
1978 , 96 , 6258
8 inventors; Ger. Patent 1274586.
, Chem. Abstr.
1968 , 71 , 50521
9
Cai D.
Hughes DL.
Verhoeven TR.
Reider PJ. In Organic Syntheses, Vol. 76
Martin SF.
John Wiley & Sons;
New York:
1998.
p.1
10
Brandt J.
Gais H.-J.
Tetrahedron: Asymmetry
1997,
8:
909
11a inventors; Hung. Patent 178516.
, Chem. Abstr.
1978 , 97 , 38959
11b
Fogassy E.
Ács M.
Tóth G.
Simon K.
Láng T.
Ladányi L.
Párkányi L.
J. Mol. Struct.
147,
143
12a inventors; Hung. Patent 169845.
, Chem. Abstr.
1974 , 85 , 192335
12b
Ács M.
Kozma D.
Fogassy E.
Ach. Mod. Chem.
1995,
132:
475
13
Rábay J.
Angew. Chem., Int. Ed. Engl.
1992,
31:
1631
14
Fogassy E.
Ács M.
Szili T.
Simándi B.
Sawinsky J.
Tetrahedron Lett.
1994,
35:
257
15
Simon H.
Ph.D. Dissertation
Technical University, Budapest;
Hungary:
2003.
16
Tanaka K.
Kato M.
Toda F.
Heterocycles
2001,
54:
405
17
Kobayashi Y.
Kodama K.
Saigo K.
Org. Lett.
2004,
6:
2941
18
Kassai Cs.
Ph.D. Dissertation
Technical University, Budapest;
Hungary:
2000.
19
Ács M.
Mravik A.
Fogassy E.
Böcskei Zs.
Chirality
1994,
6:
314
20a
Optical Resolutions via Diastereomeric Salt Formation
Kozma D.
CRC Press;
London:
2002.
20b
Faigl F.
Kozma D. In Enantiomer Separation: Fundamentals and Practical Methods
Toda F.
Kluwer Academic Press;
Dordrecht:
2004.
21
Kozsda KE.
Keserž Gy.
Böcskei Zs.
Szilágyi J.
Simon K.
Bertók B.
Fogassy E.
J. Chem. Soc., Perkin Trans. 2
2000,
149
22a inventors; Hung. Patent 214720.
, Chem. Abstr.
1995 , 124 , 117097
22b inventors; US Patent 02133894.
, Chem. Abstr.
2001 , 139 , 90595
23
Bálint J.
Egri G.
Kiss V.
Gajáry A.
Juvancz Z.
Fogassy E.
Tetrahedron: Asymmetry
2001,
12:
3435
24
Sakai K.
Sakurai R.
Hirayama N.
Tetrahedron: Asymmetry
2004,
15:
1073
25
Sakai K.
Sakurai R.
Yuzawa A.
Hirayama N.
Tetrahedron: Asymmetry
2003,
14:
3713
26
Sakai K.
Sakurai R.
Nohira H.
Tanaka R.
Hirayama N.
Tetrahedron: Asymmetry
2004,
15:
3495
27
Schanz HJ.
Linseis MA.
Gilheany DG.
Tetrahedron: Asymmetry
2003,
14:
2767
28
Sakai K.
Sakurai R.
Yuzawa A.
Kobayashi Y.
Saigo K.
Tetrahedron: Asymmetry
2003,
14:
1631
29a
Fogassy E.
Lopata A.
Faigl F.
Ács M.
Darvas F.
Tőke L.
Tetrahedron Lett.
1980,
21:
647
29b
Fogassy E.
Faigl F.
Ács M.
Grofcsik A.
J. Chem. Res., Synop.
1981,
11:
346 ; J. Chem. Res., Miniprint
1981 , 11 , 3981
29c
Fogassy E.
Faigl F.
Ács M.
Tetrahedron
1985,
41:
2837
30
Kozma D.
Pokol G.
Ács M.
J. Chem. Soc., Perkin Trans. 2
1992,
435
31
Fogassy E.
Kozma D.
Tetrahedron Lett.
1995,
36:
5069
32
Bálint J.
Egri G.
Vass G.
Schindler J.
Gajáry A.
Friesz A.
Fogassy E.
Tetrahedron: Asymmetry
2000,
11:
809
33 inventors; Hung. Patent 193199.
, Chem. Abstr.
1984 , 104 , 168835
34
Gizur T.
Péter I.
Harsányi K.
Fogassy E.
Tetrahedron: Asymmetry
1996,
7:
1589
35
Kaptein B.
Elsenberg H.
Grimbergen RFP.
Broxterman QB.
Hulshof LA.
Vries T.
Tetrahedron: Asymmetry
2000,
11:
1343
36
Vries T.
Wynberg H.
van Echten E.
Kock J.
ten Hoeve W.
Kellogg RM.
Broxterman QB.
Minnard A.
Kaptein B.
van der Sluis S.
Hulshof LA.
Angew. Chem. Int. Ed.
1998,
37:
2349
37
Kellogg RM.
Nieuwenhuijzen WJ.
Pouwer K.
Vries T.
Broxterman QB.
Grimbergen RFP.
Kaptein B.
La Crois RM.
de Wever E.
Zwaagstra K.
van der Laan A.
Synthesis
2003,
1626
38
Liu A.
Mok KF.
Leung PH.
Chem. Commun.
1997,
2397
39
Mravik A.
Chem. Eur. J.
1998,
4:
1621
40
Várkonyi SE.
Takács K.
Hermecz I.
J. Heterocycl. Chem.
1997,
34:
1064
41
Robinson DEJE.
Bull SD.
Tetrahedron: Asymmetry
2003,
14:
1407
42
Eames I.
Angew. Chem. Int. Ed.
2000,
39:
885
43 inventors; Hung. Patent 195174.
, Chem. Abstr.
1984 , 102 , 61849
44
Tsunoda T.
Kaku H.
Nagaku M.
Okuyama E.
Tetrahedron Lett.
1997,
38:
7759
45
Enantiomers, Racemates and Resolutions
Jacques J.
Collet A.
Wilen SH.
Wiley;
New York:
1981.
46
Stereochemistry of Organic Compounds
Eliel EL.
Wilen SH.
Wiley;
New York:
1994.
47
Pasteur L.
Ann. Chim. Phys.
1848,
24:
442
48
Mravik A.
Lepp Zs.
Fogassy E.
Tetrahedron: Asymmetry
1996,
718:
2387
49a
Pincock RE.
Wilson KR.
J. Am. Chem. Soc.
1971,
93:
1291
49b
Kondepudi DK.
Laudadio J.
Asakura K.
J. Am. Chem. Soc.
1999,
121:
1448
50a inventors; Hung. Patent 179452.
, Chem. Abstr.
1978 , 97 , 6331
50b
Fogassy E.
Ács M.
Tóth G.
Simon K.
Láng T.
Ladányi L.
Párkányi L.
J. Mol. Struct.
1986,
147:
143
51
Dolchi C.
Fumagalli L.
Moroni B.
Pallavicini M.
Valoti E.
Tetrahedron: Asymmetry
2003,
14:
3779
52
Tamura R.
Fujimoto D.
Lepp Z.
Misaki K.
Miura H.
Takahasi H.
Ushio T.
Nakai T.
Hirotsu K.
J. Am. Chem. Soc.
2002,
124:
13139
53a inventors; Hung. Patent 181416.
, Chem. Abstr.
1979 , 99 , 22300
53b
Ács M.
Pokol Gy.
Faigl F.
Fogassy E.
J. Therm. Anal.
1988,
33:
1241
54
Ács M.
Fogassy E.
Faigl F.
Tomor K.
Simon K.
Marsó K.
Mol. Cryst. Liq. Cryst.
1988,
156:
193
55
Simon H.
Kassai Cs.
Madarász Z.
Fogassy E.
Kozma D.
Chirality
2001,
13:
29
56
Noyori R.
J. Am. Chem. Soc.
1995,
117:
2675
57
Girard C.
Kagan HB.
Angew. Chem. Int. Ed.
1998,
37:
2922 ; Angew. Chem. 1998 , 110 , 3088
58
Kozma D.
Fogassy E.
Mol. Cryst. Liq. Cryst.
1996,
276:
25
59
Markovits I.
Egri G.
Fogassy E.
Chirality
2002,
14:
674
60a
Kozma D.
Madarász Z.
Ács M.
Fogassy E.
Chirality
1995,
7:
381
60b
Kozma D.
Simon H.
Kassai Cs.
Madarász Z.
Fogassy E.
Chirality
2001,
13:
29