Laryngorhinootologie 2006; 85(3): 191-196
DOI: 10.1055/s-2005-870302
Otologie
© Georg Thieme Verlag KG Stuttgart · New York

Pseudodominanz zweier rezessiver Connexin-Mutationen bei nicht-syndromaler Hörstörung?

Pseudodominants of Two Recessive Connexin Mutations in Non-syndromic Sensorineural Hearing Loss?R.  Birkenhäger1 , A.  J.  Zimmer1 , W.  Maier1 , J.  Schipper1
  • 1Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde und Poliklinik, Forschungsgruppe Genetische Erkrankungen des Kopf- Hals-Bereiches, Universitätsklinikum Freiburg (ärztlicher Direktor: Professor Dr. med. Dr. h. c. R. Laszig)
Weitere Informationen

Publikationsverlauf

Eingegangen: 20. September 2004

Angenommen: 27. Juni 2005

Publikationsdatum:
12. September 2005 (online)

Zusammenfassung

Hintergrund: Bisher wurden mehr als 100 Genorte identifiziert, die mit Erkrankungen des Innenohrs in Verbindung gebracht werden. Genetische Defekte im Connexin-26-Gen (GJB2) sind in etwa der Hälfte aller Fälle die häufigste Ursache für nicht-syndromale Innenohrschwerhörigkeit. Die Connexin-26- und -30-Gene (GJB2 und GJB6) sind auf Chromosom 13q11-12 benachbart lokalisiert. Im Innenohr wurden bisher vier verschiedene Connexinmoleküle nachgewiesen. Connexine gehören zu der Gruppe von „Gap Junction”-Proteinen, die Connexone ausbilden. Diese bestehen aus sechs Connexinmolekülen. Sie sind für den Austausch von Ionen und kleineren Molekülen zwischen benachbarten Zellen verantwortlich. Methode: Der Nachweis der Mutationen in den Connexin-Genen 26, 30, und 31 (GJB2, GJB3, and GJB6) erfolgte durch direkte Sequenzierung der kodierenden Exone einschließlich der Intronübergänge. Ergebnis: In den beteiligten Familien konnten erstmals drei heterozygote Mutationen in den Connexin-26- und -30-Genen nachgewiesen werden, die in Kombination, 35ΔG mit 146/147ΔC und 35ΔG mit GJB6-D13S1830, bei den betroffenen Patienten zu einer nicht syndromalen Taubheit führten. Schlussfolgerung: Bei Hinweisen auf familiäre Hörstörungen ist es empfehlenswert, in Ergänzung zu einer spezifischen Hördiagnostik eine Mutationsanalyse der Connexin-Gene (GJB2, GJB3 & GJB6) durchzuführen, um rechtzeitig eine optimale und qualifizierte Förderung der Sprachentwicklung durch Hörhilfen, bis hin zur CI-Implantation, einzuleiten.

Abstract

Background: Hitherto more than hundred genes and gene loci for non-syndromic or syndromic deafness have been identified. Mutations in the connexin 26 gene (GJB2) account for up to 50 % of the cases of autosomal recessive hearing loss. The genes GJB2 (Connexin 26), GJB3 (connexin 31) and GJB6 (connexin 31) are located on chromosome 13q11-12. In the inner ear up to four different connexins are expressed. Connexins appertain to a group of gap junction proteins. These proteins can oligomerize to form single-membrane channels called connexons. Each connexon is composed of six subunits, that allow communication between adjacent cells by providing a channel for diffusion of ions, metabolites and second messengers. Method: Each of the exons and flanking splice regions of the connexin 26, 30, and 31 genes (GJB2, GJB3, and GJB6) have been analysed by direct sequencing. Results: In the involved families three heterozygous mutations could be detected in the connexin 26 (GJB2) and connexin 30 (GJB6) genes. If a combination of two of those mutations occurs, 35ΔG with 146/147ΔC and 35ΔG with GJB6-D13S1830 it results in hearing loss and deafness. Conclusion: By evidences of a familial background of hearing loss it is reasonable to analyse the connexin genes (GJB2, GJB3 & GJB6) for mutations, additionally to a specific hearing diagnostic, in order to enhance linguistic development through hearing aid or CI-implantation at an early stage.

Literatur

  • 1 Kelsell D P, Dunlop J, Stevens H P, Lench N J, Liang J N, Parry G, Mueller R F, Leigh I M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness.  Nature. 1997 May 1;  387 (6628) 80-83
  • 2 NCBI, National Center for Biotechnology Information .. U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, http://www.ncbi.nih.gov/
  • 3 Denoyelle F, Weil D, Maw M A, Wilcox S A, Lench N J, Allen-Powell D R, Osborn A H, Dahl H H, Middleton A, Houseman M J, Dode C, Marlin S, Boulila-ElGaied A, Grati M, Ayadi H, BenArab S, Bitoun P, Lina-Granade G, Godet J, Mustapha M, Loiselet J, El-Zir E, Aubois A, Joannard A, Petit C. et al . Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26gene.  Hum Mol Genet. 1997 Nov;  6 (12) 2173-2177
  • 4 Kumar N M, Gilula N B. The gap junction communication channel.  Cell. 1996 Feb 9;  84 (3) 381-388
  • 5 Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G. Structural and functional diversity of connexin genes in the mouse and human genome.  Biol Chem. 2002 May;  383 (5) 725-737
  • 6 Lautermann J, ten Cate W J, Altenhoff P, Grummer R, Traub O, Frank H, Jahnke K, Winterhager E. Expression of the gap-junction connexins 26 and 30 in the rat cochlea.  Cell Tissue Res. 1998 Dec;  294 (3) 415-420
  • 7 Connexin-deafness homepage, http://www.crg.es/deafness/, X. Estivill and P. Gasparini
  • 8 Zelante L, Gasparini P, Estivill X, Melchionda S, D'Agruma L, Govea N, Mila M, Monica M D, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P. Connexin26 mutations associated with the most common form of non-syndromicneurosensory autosomal recessive deafness (DFNB1) in Mediterraneans.  Hum Mol Genet. 1997 Sep;  6 (9) 1605-1609
  • 9 Murgia A, Orzan E, Polli R, Martella M, Vinanzi C, Leonardi E, Arslan E, Zacchello F. Cx26 deafness: mutation analysis and clinical variability.  J Med Genet. 1999 Nov;  36 (11) 829-832
  • 10 Kelley P M, Harris D J, Comer B C, Askew J W, Fowler T, Smith S D, Kimberling W J. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss.  Am J Hum Genet. 1998 Apr;  62 (4) 792-799
  • 11 del Castillo I, Moreno-Pelayo M A, Del Castillo F J, Brownstein Z, Marlin S, Adina Q, Cockburn D J, Pandya A, Siemering K R, Chamberlin G P, Ballana E, Wuyts W, Maciel-Guerra A T, Alvarez A, Villamar M, Shohat M, Abeliovich D, Dahl H H, Estivill X, Gasparini P, Hutchin T, Nance W E, Sartorato E L, Smith R J, Van Camp G, Avraham K B, Petit C, Moreno F. Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study.  Am J Hum Genet. 2003 Dec;  73 (6) 1452-1458
  • 12 Liu X Z, Xia X J, Xu L R, Pandya A, Liang C Y, Blanton S H, Brown S D, Steel K P, Nance W E. Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss.  Hum Mol Genet. 2000 Jan 1;  9 (1) 63-67
  • 13 Rouan F, White T W, Brown N, Taylor A M, Lucke T W, Paul D L, Munro C S, Uitto J, Hodgins M B, Richard G. trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation.  J Cell Sci. 2001;  114 2105-2113
  • 14 Liu X Z, Xia X J, Adams J, Chen Z Y, Welch K O, Tekin M, Ouyang X M, Kristiansen A, Pandya A, Balkany T, Arnos K S, Nance W E. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness.  Hum Mol Genet. 2001 Dec 1;  10 (25) 2945-2951
  • 15 del Castillo I, Villamar M, Moreno-Pelayo M A, del Castillo F J, Alvarez A, Telleria D, Menendez I, Moreno F. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment.  N Engl J Med. 2002 Jan 24;  346 (4) 243-249
  • 16 Pickering-Brown S, Baker M, Bird T, Trojanowski J, Lee V, Morris H, Rossor M, Janssen J C, Neary D, Craufurd D, Richardson A, Snowden J, Hardy J, Mann D, Hutton M. Evidence of a founder effect in families with frontotemporal dementia that harbor the tau + 16 splice mutation.  Am J Med Genet. 2004 Feb 15;  125B (1) 79-78
  • 17 Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D. A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: A novel founder mutation in Ashkenazi Jews.  Hum Mutat. 2001 Nov;  18 (5) 460
  • 18 Stinckens C, Kremer H, van Wijk E, Hoefsloot L H, Huygen P L, Standaert L, Fryns J P, Cremers C W. Longitudinal phenotypic analysis in patients with connexin 26 (GJB2) (DFNB1) and connexin 30 (GJB6) mutations.  Ann Otol Rhinol Laryngol. 2004 Jul;  113 (7) 587-593
  • 19 Erbe C B, Harris K C, Runge-Samuelson C L, Flanary V A, Wackym P A. Connexin 26 and connexin 30 mutations in children with nonsyndromic hearing loss.  Laryngoscope. 2004 Apr;  114 (4) 607-611
  • 20 Gualandi F, Ravani A, Berto A, Burdo S, Trevisi P, Ferlini A, Martini A, Calzolari E. Occurrence of del(GJB6-D13S1830) Mutation in Italian non-syndromic hearing loss patients carrying a single GJB2 allele.  Acta Otolaryngol. 2004;  552 29-34
  • 21 Richard G, Rouan F, Willoughby C E, Brown N, Chung P, Ryynanen M, Jabs E W, Bale S J, DiGiovanna J J, Uitto J, Russell L. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome.  Am J Hum Genet. 2002 May;  70 (5) 1341-1348
  • 22 van Steensel M A, van Geel M, Nahuys M, Smitt J H, Steijlen P M. A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosis-deafness syndrome.  J Invest Dermatol. 2002 Apr;  118 (4) 724-727
  • 23 Maestrini E, Korge B P, Ocana-Sierra J, Calzolari E, Cambiaghi S, Scudder P M, Hovnanian A, Monaco A P, Munro C S. A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families.  Hum Mol Genet. 1999 Jul;  8 (7) 1237-1243
  • 24 Uyguner O, Tukel T, Baykal C, Eris H, Emiroglu M, Hafiz G, Ghanbari A, Baserer N, Yuksel-Apak M, Wollnik B. The novel R75Q mutation in the GJB2 gene causes autosomal dominant hearing loss and palmoplantar keratoderma in a Turkish family.  Clin Genet. 2002 Oct;  62 (4) 306-309
  • 25 Grifa A, Wagner C A, D'Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica M D, Estivill X, Zelante L, Lang F, Gasparini P. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus.  Nat Genet. 1999 Sep;  23 (1) 16-18
  • 26 Lamartine J, Munhoz Essenfelder G, Kibar Z, Lanneluc I, Callouet E, Laoudj D, Lemaitre G, Hand C, Hayflick S J, Zonana J, Antonarakis S, Radhakrishna U, Kelsell D P, Christianson A L, Pitaval A, Der Kaloustian V, Fraser C, Blanchet-Bardon C, Rouleau G A, Waksman G. Mutations in GJB6 cause hidrotic ectodermal dysplasia.  Nat Genet. 2000 Oct;  26 (2) 142-144
  • 27 Richard G, Brown N, Smith L E, Terrinoni A, Melino G, Mackie R M, Bale S J, Uitto J. The spectrum of mutations in erythrokeratodermias-novel and de novo mutations in GJB3.  Hum Genet. 2000 Mar;  106 (3) 321-329
  • 28 Knudson A G Jr. Mutation and cancer: statistical study of retinoblastoma.  Proc Natl Acad Sci U S A. 1971 Apr;  68 (4) 820-823
  • 29 Vogelstein B, Fearon E R, Hamilton S R, Kern S E, Preisinger A C, Leppert M, Nakamura Y, White R, Smits A M, Bos J L. Genetic alterations during colorectal-tumor development.  N Engl J Med. 1988 Sep 1;  319 (9) 525-532
  • 30 Driscoll M C, Dobkin C S, Alter B P. Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites.  Proc Natl Acad Sci U S A . 1989 Oct;  86 (19) 7470-7474
  • 31 Grosveld F. Activation by locus control regions?.  Curr Opin Genet Dev . 1999 Apr;  9 (2) 152-157
  • 32 Lautermann J, Gabriel H D, Kupsch P, Winterhager E, Jahnke K. Connexin26 and -30 in the Cochlea and their clinical relevance.  Laryngorhinootologie . 2001 Dec;  80 (12) 719-724
  • 33 Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin J P, Petit C, Willecke K. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential.  Hum Mol Genet. 2003 Jan 1;  12 (1) 13-21
  • 34 Marziano N K, Casalotti S O, Portelli A E, Becker D L, Forge A. Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30.  Hum Mol Genet. 2003 Apr 15;  12 (8) 805-812

Dr. Ralf Birkenhäger

Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde und Poliklinik

Universitätsklinikum Freiburg · Killianstraße 5 · D-79106 Freiburg

eMail: birkenhaeger@hno.ukl.uni-freiburg.de